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Unsteady aerodynamic models for control of agile micro air
vehicles

FA9550-07-1-0127

Clarence W. Rowley
Department of Mechanical and Aerospace Engineering

Princeton University

Abstract

Small, lightweight aircraft are of increasing interest to the Air Force, for addressing poten-
tial threats in urban environments and other complex terrain. In order to avoid obstacles,
respond to gusts, and track potentially elusive targets, highly agile maneuvers will be re-
quired, for which the standard quasi-steady aerodynamic models are not accurate. This
project addresses the development of a hierarchy of models for unsteady aerodynamics, in
a framework that is suitable for control design. The ultimate goal is to use these models for
the design of flight controllers, for instance to accurately track a trajectory in the presence
of large disturbances.

Classical aerodynamic models by Theodorsen and Wagner were shown to be accurate in
many cases, but break down at high angles of attack or for very rapid maneuvers. Finite-
time Lyapunov exponents (FTLE) were used to identify meaningful flow structures and
elucidate the flow physics. Methods were developed to perform balanced model reduction
without the need for adjoint information, and for systems with periodic motions (such as
vortex shedding). These were used to develop models of unsteady pitching and plunging
maneuvers that are well-suited to control design techniques. The methods were developed
for linearized models (small-amplitude motions) but also perform well for large-amplitude
maneuvers.
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1 Executive summary

Most models used for flight control in today’s aircraft assume that the forces and moments
on the aircraft are quasi-steady: they depend only on the velocity of the vehicle relative
to the surrounding air. However, unsteady effects become increasingly important for Micro
Air Vehicles, where rapidly changing gusts and large accelerations render the quasi-steady
assumption invalid.

The purpose of this project is to obtain improved models for unsteady aerodynamics, in
a form that is suitable for control design. Classical approaches to unsteady aerodynamics
include the frequency-domain models of Theodorsen [58] and the time-domain models of [63],
but these are not directly suitable for control design. A handful of more modern studies
are available for rolling delta wings [4, 44] and for airfoils undergoing dynamic stall [18, 41],
but these still have many limitations. For instance, the model in [18] must be calibrated
to experimental data, and often does not match data it was not specifically calibrated
against [9]. The model [41] is linear, and any nonlinear effects such as bifurcations and
hysteresis are not captured. The focus of the present effort is to obtain models that overcome
these various shortcomings, and may be used for designing flight controllers.

1.1 Techniques

The overall goal of this work is to provide improved models for design of flight controllers.
Our focus, however, is on the aerodynamic models: predicting lift, drag, and moments from
quantities such as freestream velocity and angle of attack. In traditional flight dynamic
models, these lift and drag forces are typically treated as quasi-steady: for instance, lift
is treated as a static function of angle of attack (equal to the steady-state value). When
unsteady aerodynamics become important, this approach is not sufficient, and so we treat
the aerodynamic models separately, as shown in Figure 1. The focus of the present effort is
to determine models for the “Aerodynamics” block in Figure 1.

The models we are developing in this project build on a number of numerical tools, which
we describe briefly here.

Immersed boundary solver. The starting point for many of the modeling approaches we
employ is a high-fidelity direct numerical simulation (DNS). (In many cases, experimental
data is equally suitable.) We use an Immersed Boundary Fractional Step method with a
fast solver, developed by Colonius and Taira [13]. The studies here are for low Reynolds
number (mostly at Re = 100), but the modeling techniques are equally applicable at higher
Reynolds numbers.
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Figure 1: Overall structure for coupling of flight dynamics to unsteady aerodynamic models.

Lagrangian Coherent Structures. In order to identify the coherent structures that arise
in these unsteady flows, we compute Lagrangian Coherent Structures [24], which precisely
determine the boundaries of separation bubbles and other structures one needs to model
in order to accurately describe the unsteady aerodynamics. These methods originate from
the dynamical systems community, employing ideas of hyperbolic invariant manifolds and
Finite-Time Lyapunov Exponents (FTLE). These techniques give a clear picture of the
structure of these complex unsteady flows, and thus allow one to better understand the flow
physics.

Balanced Proper Orthogonal Decomposition. In a related MURI project on Closed-
Loop Flow Control, we have developed improved model reduction methods, based on ap-
proximations of balanced truncation that are tractable even for very large systems. This
method, called Balanced Proper Orthogonal Decomposition (BPOD) has been quite suc-
cessful for producing low-order models suitable for control design [2], and significantly out-
performs standard POD-Galerkin methods. In the present effort, we employ this technique,
and develop it further, introducing a method that does not require adjoint simulations, and
extending it to systems with periodic orbits (such as periodic vortex shedding).

1.2 Summary of this report

This report describes the results of this three-year project, and the technical results are
divided into five sections. In Section 2, we provide some necessary background on classical
models for unsteady aerodynamics.

In Section 3, we describe how we use Finite-Time Lyapunov Exponents (FTLE) to identify
when unsteady separation occurs, and use these quantities to gain an improved understand-
ing of when the classical models break down. We demonstrate that the classical models fail
when there is significant leading-edge separation, which occurs at large Strouhal numbers or
reduced frequencies. A key result of this section is a method for fast computation of FTLE
fields, when one needs to compute many fields at nearby times (as when making a movie).

Section 4 presents two different modeling procedures for predicting unsteady aerodynam-
ics using nonlinear models. One approach is based on Proper Orthogonal Decomposition
(POD) and Galerkin projection, and the other is a simple “phenomenological” model based
on the phenomena observed in the real flow. The models include nonlinear behavior such
as Hopf bifurcations and limit cycles, both of which are observed in the real flow. However,
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both modeling strategies have a serious limitation in that they need to be calibrated for a
particular angle of attack, and are not immediately suitable for control design. Neverthe-
less, they provide a starting point for future work in developing nonlinear models for these
unsteady flows.

Section 5 presents the technique of model reduction that has been most successful in this
work: Balanced Proper Orthogonal Decomposition (Balanced POD). This technique is based
on linear models, and typically requires numerical simulations of both the linearized equa-
tions and the corresponding adjoint equations. The need for adjoint information is a severe
limitation of this method, as it prohibits it from being applied to experimental data. A ma-
jor result of this project is a method for developing reduced-order models that are identical
to Balanced POD, without the need for adjoint information. This procedure is presented in
Section 5.1. Another extension is to flows linearized about a periodic orbit, such as periodic
vortex shedding, and this is described in Section 5.2.

The model reduction methods developed in Section 5 are then applied to unsteady aerody-
namics in Section 6, and we view the models in this section as the models most appropriate
for design of flight controllers. These models are based on Wagner’s indicial response [63],
and agree with Wagner’s models to an arbitrarily high degree of accuracy. While Wagner’s
models represent the lift as a convolution integral that is cumbersome to compute, and not
suitable for control synthesis, our procedure produces state-space models that may be used
directly for control design. Furthermore, our models are formulated in a way that directly
builds upon standard approaches incorporating classical “stability derivatives” CLα, CLα̇,
CLα̈ (as in [57]), as shown in Figure 28.

The models obtained in Section 6 predict the unsteady response very well for small-amplitude
maneuvers. For large amplitude maneuvers, agreement is poor when the angle of attack
becomes larger than about 20◦. More work is needed, however, to extend these models to
the nonlinear regime.

2 Background: classical models

When modeling the aerodynamic forces acting on an airfoil in motion, it is natural to start
with a quasi-steady approximation. Instead of dealing with the full unsteady problem, one
assumes that the airfoil’s center of mass, h, and angle of attack, α, motions are “gradual”
enough for the flow field to locally equilibrate to the motion. In this way, the unsteady terms
in the flow equations are set to zero and the motion is accounted for by translating ḣ into
an effective angle of attack and α̇ into an effective camber. Finally, applying the assumption
of a thin airfoil, we obtain a quasi-steady estimate for the lift coefficient

CL = 2π
(
α+ ḣ+

1
2
α̇

(
1
2
− a
))

(1)

Lengths are nondimensionalized by 2b and time is nondimensionalized by 2b/U∞, where
U∞ is the free stream velocity, b is the half-chord length and a is the pitch axis location
with respect to the 1/2-chord (e.g., pitching about the leading edge corresponds to a = −1,
whereas the trailing edge is a = 1).

2.1 Theodorsen’s frequency response

In 1935, Theodorsen[58] went beyond the quasi-steady models and solved for the lift dis-
tribution around an idealized airfoil in purely sinusoidal pitch and plunge maneuvers. His
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theory is soluble with analytic techniques, relying on a number of simplifications, such as
an inviscid, incompressible flow field and infinitesimal deflections of a flat plate, leaving an
idealized planar wake. Because his theory was developed to handle purely sinusoidal maneu-
vers, it is represented in the frequency domain. Theodorsen’s model predicts the unsteady
lift as

CL =
π

2

[
ḧ+ α̇− a

2
α̈
]

︸ ︷︷ ︸
Apparent Mass

+ 2π
[
α+ ḣ+

1
2
α̇

(
1
2
− a
)]

︸ ︷︷ ︸
Circulatory

C(k)

where Theodorsen’s function C(k) is a transfer function relating sinusoidal inputs of reduced
frequency[30] k to their aerodynamic response. The first set of terms represent the “apparent
mass”, or non-circulatory terms. The second set of terms are due to circulatory effects, and
are exactly the quasi-steady forces multiplied by Theodorsen’s function, which accounts for
the change in magnitude and phase of these terms with changes in reduced frequency. This
expression simplifies considerably for an airfoil in pure pitch or pure plunge

pure plunge (α = 0) CL =
π

2
ḧ+ 2πḣC(k) (2)

pure pitch CL =
π

2

[
α̇− a

2
α̈
]

+ 2π
[
α+

1
2
α̇

(
1
2
− a
)]

C(k) (3)

2.2 Wagner’s indicial response

Although Theodorsen’s model is a powerful tool for determining unsteady lift coefficients, it
is only solvable in closed form for sinusoidal forcing. The time domain method of Wagner[63]
makes it possible to reconstruct the lift response to arbitrary angle-of-attack input, α(t), by
superposition of the “indicial” lift response CSL(t) due to a step response in angle of attack,
α̇ = δ(t):

CL(t) = CSL(t)α(0) +
∫ t

0
CSL(t− τ)α̇(τ)dτ (4)

Wagner originally derived the indicial response analytically, accounting for added mass and
shed-wake effects in a manor similar to that of Theodorsen. However, it is possible to reduce
the number of simplifying assumptions by obtaining the indicial response CSL from experi-
ment. Therefore, the only assumption is that of linearity; a more general approach based
on functionals has been developed to extend this theory for nonlinear indicial response[59].

There are a number of interesting generalizations to these methods, such as the methods
of Sears[62] and Küssner[31], which extended the methods of Theodorsen and Wagner, re-
spectively, to the problem of moving wind direction, rather than moving airfoil. However,
this section is meant to provide a brief review of the classical tools developed for modeling
unsteady aerodynamic forces in the 1920s–1950s. A more complete treatment of the subject
can be found in Leishman[33].

Wagner’s indicial response benefits from its time domain formulation; however, the superpo-
sition integral approach is computationally expensive and does not fit nicely into a control
framework. In Section 6, we present a systematic approach for obtaining computationally
tractable reduced order models (ROMs) based on the indicial response. Moreover, these
models take the form of low-dimensional, state-space equations, which are ideal for the
application of analysis and control techniques.
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3 Finite-time Lyapunov exponents for detecting breakdown of
classical models

Classical models for unsteady aerodynamics often assume that the flow remains attached
over a wing. Violation of this assumption is a common reason for classical models to break
down, and therefore detecting unsteady separation is valuable. Moreover, an understanding
of flow separation provides insight into the flow physics involved in these phenomena.

Separation in unsteady flows is a surprisingly subtle phenomenon. In steady flows, the
criterion for separation is simple: at a separation point, the shear stress vanishes at the walls.
In an unsteady flow, this criterion is not valid, either when applied to the time-averaged
mean flow, or to the instantaneous unsteady flow, and more sophisticated techniques are
required [64].

Finite-time Lyapunov exponents (FTLE) are a valuable tool for studying unsteady sepa-
ration, and identifying separated regions. However, FTLE fields are reasonably expensive
to compute, especially when one is interested in an unsteady phenomenon, and visualizing
FTLE fields at many different times. In Section 3.1 we present a technique for significantly
improving the speed of this computation. In Section 3.2 we use this technique to iden-
tify when classical unsteady models fail, and we demonstrate that this breakdown typically
occurs when separation becomes significant. For further details on these methods, see [7, 8].

3.1 Fast computation of time-varying FTLE fields

The theory and computation of finite-time Lyapunov exponents (FTLE), also known as
direct Lyapunov exponents (DLE), is a relatively modern development [23, 53], with exten-
sions to 3-dimensional [20, 22] and n-dimensional [36] flows. FTLE analysis has been widely
applied in a number of branches of fluid mechanics, including fluid transport [51, 15, 52], bio-
propulsion [48, 65, 19], flow over airfoils [38, 9, 7], plasmas [47], and geophysical flows [34, 35].

Because FTLE analysis is particularly useful for unsteady flows, it is often necessary to
compute a sequence of FTLE fields in time to visualize an unsteady event. As flows become
more complex, computations become increasingly expensive. In particular, FTLE calcula-
tions are expensive because a large number of particle trajectories must be integrated in
order to obtain a particle flow map, often from stored velocity fields. When computing a
sequence of FTLE fields in time, it is possible to speed up the computation considerably
by eliminating redundant particle integrations. One approach that has been developed uses
adaptive mesh refinement to reduce the number of integrations [16, 50, 54].

The approach here is to construct an approximate flow map by composing intermediate
flow maps from FTLE field calculations at neighboring times. The first class of flow map
approximation, denoted unidirectional composition, constructs a flow map by composing
intermediate flow maps which are all aligned in the same time direction. The second class,
denoted bidirectional composition, composes intermediate flow maps in both positive and
negative-time. The methods are compared using analytic estimates for accumulated error
and computation time as well as benchmarks on a number of example flows.

Main results In this section we demonstrate that the unidirectional method is both fast
and accurate, although it requires significantly more memory than the bidirectional method.
Orders of magnitude speed-up may be achieved over the standard method, and computa-
tional improvement scales with the desired time resolution of the FTLE animation. The
bidirectional method suffers from significant error which is aligned with the opposite-time
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Lagrangian coherent structures. To understand this coherent error, we provide an error
analysis for both methods, and uncover an important relationship between positive-time
LCS (pLCS) and negative-time LCS (nLCS). In particular, in the neighborhood of a time-
dependent saddle, particles near the pLCS flow into particles near the nLCS in positive
time.

3.1.1 Standard computation of FTLE

Consider a time-dependent velocity field u on Rn and a particle trajectory x(t) which satisfies

ẋ = u (x(t), t) . (5)

The velocity field, u, may be an unsteady solution of the Navier-Stokes equation, although it
is only assumed that u is at least C0 in time and C1 in space. However, to extract Lagrangian
coherent structures from the Hessian of the FTLE field, u must be C2 in space [53]. The
velocity field may be analytically defined, but is more often obtained from experiments or
direct numerical simulation which produce velocity field data at discrete snapshots over a
finite range of time. A method of computing finite-time Lyapunov exponents (FTLE) on a
finite amount of discrete velocity field data has been developed [23, 53].

Computing an FTLE field typically involves four steps. First, a grid of particles X0 ⊂ Rn is
initialized over the domain of interest. The particles are advected (i.e., integrated) with the
flow from initial time 0 to final time T , resulting in a time-T particle flow map, ΦT

0 , defined
as:

ΦT
0 : Rn → Rn; x(0) 7→ x(0) +

∫ T

0
u(x(τ), τ)dτ. (6)

Next, the flow map Jacobian, DΦT
0 is computed, usually by finite-differencing, to obtain the

Cauchy-Green deformation tensor,

∆ =
(
DΦT

0

)∗
DΦT

0 (7)

where ∗ denotes transpose. Finally, the largest eigenvalue, λmax, of this symmetric tensor is
extracted and synthesized into an FTLE field:

σ(ΦT
0 ; x) =

1
|T | log

√
λmax(∆(x)). (8)

The bottleneck in this procedure is the large number of particle integrations required to
obtain the particle flow map, ΦT

0 . Moreover, if the velocity field is time-varying, it is
necessary to compute a sequence of FTLE fields in time to visualize unsteady events, as
shown schematically in Fig. 2.

3.1.2 Flow Map Approximation

As seen in Fig. 2, the standard method of computing a sequence of FTLE fields involves
inefficient re-integration of particles. The unidirectional and bidirectional methods outlined
below streamline the computation of neighboring FTLE fields by approximating the time-T
flow map, Φt0+T

t0
, which can be written as:

Φt0+T
t0

= ΦtN
tN−1

◦ · · · ◦ Φt2
t1
◦ Φt1

t0
(9)
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Exact Flow

Redundant
Essential

ΦT
0

Φh+T
h

Φ2h+T
2h

Φ3h+T
3h

Time
3h2hh0 T . . .. . .

Figure 2: The standard method for computing FTLE. Exact flow maps Φkh+T
kh for k ∈

{0, 1, 2, 3} are shown (solid black arrow). Essential (blue) and redundant (red) particle
integrations are outlined in dashed ovals.

where tN = t0 + T .

Because the flow maps are obtained numerically on a discrete grid of points, X0 ⊂ Rn, it
is necessary to interpolate the map at points x /∈ X0. Consider a flow map Φ : Rn → Rn,
defined on Rn, and the same flow map restricted to X0, Φ|X0 : X0 → Rn. The interpolation
operator I takes the discrete map Φ|X0 and returns the map, Φ, defined on all of Rn:

I : Φ|X0 7→ Φ (10)

Using the shorthand IΦ , I (Φ|X0), we obtain the approximate flow map:

Φ̃t0+T
t0

(X0) = IΦtN
tN−1

◦ · · · ◦ IΦt2
t1
◦ Φt1

t0
(X0)

≈ Φt0+T
t0

(X0)
(11)

The bidirectional method approximates the time-T flow map Φt0+T
t0

by first integrating back-
ward to a reference time, t = 0, then interpolating forward through a previously computed
time-T map, ΦT

0 , and finally integrating forward to time t0 +T . The unidirectional method
approximates the time-T flow map using a number of smaller time flow maps, Φti+h

ti
, which

all have the same time direction. Additionally, the chain rule may be applied to each of the
methods, resulting in an approximation to the flow map Jacobian, DΦt0+T

t0
.

3.1.3 Bidirectional Composition

Bidirectional approximation eliminates redundancy from neighboring FTLE field computa-
tions by using the information from a known flow map at a given time, ΦT

0 , to calculate an
approximation to the flow map at future times, Φt0+T

t0
. First, X0 is integrated backward

from t0 to the reference time 0. The distorted grid Φ0
t0(X0) is then flowed forward through

the interpolated map, IΦT
0 , and finally integrated forward an amount t0 to the desired time

t0 + T , as in Fig. 3:

Φt0+T
t0

= Φt0+T
T ◦ IΦT

0 ◦ Φ−t00 . (12)

The flow ΦT
0 is stored as a reference solution to compute an approximation to the flow map

at later times Φ̃kh+T
kh ≈ Φkh+T

kh by

Φ̃kh+T
kh = Φkh+T

T ◦ IΦT
0 ◦ Φ0

kh k ∈ Z (13)
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Known Flow Map

Integrate

Approximate

Interpolate
Integrate

Time
3h2hh0 . . .. . . T

ΦT
0

Figure 3: Schematic for bidirectional method (a). Given a known flow map ΦT
0 (solid black

arrow), it is possible to approximate the flow map at later times Φ̃kh+T
kh (dashed black

arrow) by integrating backward in time to t = 0 (red arrow), flowing forward through the
interpolated map IΦT

0 which was already computed (blue double arrow), and integrating
trajectories forward to the correct final time (green arrow).

Instead of using ΦT
0 as the reference solution for every future time, it is convenient to use

the new approximate flow map Φ̃h+T
h as the reference solution for the next iteration:

Φ̃2h+T
2h = Φ2h+T

h+T ◦ IΦ̃h+T
h ◦ Φh

2h (14)

This method may be continued, using Φ̃kh+T
kh to approximate Φ̃(k+1)h+T

(k+1)h :

Φ̃(k+1)h+T
(k+1)h = Φ(k+1)h+T

kh+T ◦ IΦ̃kh+T
kh ◦ Φkh

(k+1)h. (15)

Errors will compound more quickly since we are using approximate flow maps as the reference
solutions for later approximations, as seen in Fig. 4.

Integrate

Approximate

Interpolate
Integrate

Time

Known Flow Map

3h2hh0 . . .. . . T

ΦT
0

Figure 4: Schematic for bidirectional method (b). As in Fig. 3, a known flow map (solid
black arrow) is used to approximate the flow map at a later time Φ̃kh+T

kh (dashed black
arrow). The approximate flow map is used as the known map for the next step (dashed
black arrow).

3.1.4 Unidirectional Composition

The basis of the unidirectional method is to eliminate redundant particle integrations by only
integrating particle trajectories through a given velocity field a single time. If a sequence of
FTLE snapshots is desired at a time spacing of h, for example as frames in an animation,
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then it is convenient to break up the time-T flow map into smaller time-h flow maps, where
T = kh:

Φ̃kh
0 = IΦkh

(k−1)h ◦ · · · ◦ IΦ2h
h ◦ Φh

0 (16)

This method is called unidirectional because particle flow maps of the same time direction
are used, as opposed to the bidirectional method which composes both positive-time and
negative-time flow maps.

Time

Desired Flow Map

. . .

3h2hh0 . . .. . . T+hT

Φh+T
h

Figure 5: Schematic for unidirectional method. Time-h flow maps (short blue arrows) are
stored and composed to approximate the time-T flow map (long black arrow). The next
flow map only requires integrating one new time-h flow map (green arrow).

The simplest approach is to compute a number of time-h flow maps and store them in
memory. Then, to construct an approximate Φt0+T

t0
, it remains only to compose the sequence

of interpolated time-h flow maps. The next iteration involves integrating one more time-h
flow map and composing the next sequence, as in Fig. 5.

To further improve efficiency by reducing the total number of flow map compositions, it is
possible to construct a multi-tiered hierarchy of flow maps for reuse in neighboring flow map
constructions. Given enough memory, it is possible to reduce the number of interpolated
compositions by increasing the number of tiers of flow maps, each tier being constructed as
the composition of two of the flow maps in the next tier lower, as in Fig. 6.

Time

Desired Flow Map

. . .

. . .

. . .

. . .

3h2hh0 . . .. . .

Φh+T
h

T h+T

Figure 6: Schematic for unidirectional method with multiple tiers. The bottom tier of time-
h flow maps is computed as in Fig. 5. Pairs are composed to form the next tier of time-2h
flow maps, and so on. This method requires more storage, but fewer total compositions
when computing a series of FTLE fields for an animation.

3.1.5 Chain Rule of Compositions

As seen in Eq. (7), once the flow map Φt0+T
t0

is obtained, it is necessary to compute the flow
map Jacobian in order to extract the FTLE. Applying the chain rule to Eq. (9), it is possible
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Problem Resolution T/h Frames Method Mem. (GB) Speed-up Accurate
Double Gyre 1024× 512 15 30 Standard .05 1 Yes

Unidirectional .36 10 Yes
Bidirectional .14 6.2 No

Pitching plate 1024× 512 15 30 Standard .48 1 Yes
Unidirectional .70 8.2 Yes
Bidirectional .50 5.4 No

Pitching plate 600× 300 150 192 Standard .48 1 Yes
Unidirectional 1.8 67 Yes
Bidirectional .48 54 No

ABC flow 1283 20 40 Standard .48 1 Yes
Unidirectional 2.6 6.8 Yes
Bidirectional .73 7.3 No

Table 1: Comparison of methods on various examples fluid flows. The unidirectional method
both fast and accurate, but requires more memory than the other methods, providing one
or two orders of magnitude computational improvement over the standard method.

to express the flow map Jacobian as a product of the Jacobians of intermediate flow maps:

D(ΦtN
t0

)(x) = D
(

ΦtN
tN−1

◦ · · · ◦ Φt2
t1
◦ Φt1

t0

)
(x) (17)

= DΦtN
tN−1

(
ΦtN−1

t0
(x)
)
× · · · ×DΦt1

t0
(x)

Applied to the bidirectional methods, this yields:

Φh+T
h =Φh+T

T ◦ ΦT
0 ◦ Φ0

h

=⇒ DΦh+T
h (x) =DΦh+T

T

(
ΦT

0 ◦ Φ0
h

)
(x)× (18)

×DΦT
0

(
Φ0
h

)
(x) ◦DΦ0

h(x),

and applied to the unidirectional methods, this yields:

ΦT
0 =ΦT

T−h ◦ · · · ◦ Φ2h
h ◦ Φh

0

=⇒ DΦT
0 (x) =DΦT

T−h

(
ΦT−h

0 (x)
)
× · · · (19)

· · · ×DΦ2h
h

(
Φh

0(x)
)
×DΦh

0(x).

3.1.6 Comparison of Methods

Each method from Section 3.1.2 is implemented and tested on three example problems: the
periodic double gyre, 2D flow over a pitching flat plate at Reynolds number 100, and 3D
unsteady ABC flow. These examples are chosen because they cover a range of features
including 2D and 3D vector fields, which are either defined analytically or obtained from
data files from DNS on either open, closed, or periodic domains. Each example problem
is discussed more in Appendix B of [8], including details such as how the velocity field is
defined, and on what domain. In the pitching plate example, velocity field snapshots are all
loaded up-front before applying the methods.
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(C1)  Exact (C2) Unidirectional (C3) Bidirectional (C4) Exact (opposite-time)

(R1)  Double Gyre

(R2)  Pitching Plate

(R3)  Pitching Plate

(R4)  Unsteady ABC

Figure 7: Graphical comparison of each method on four examples: (top row) positive-time
FTLE of double gyre, (second row) positive-time FTLE of 2D pitching plate, (third row)
negative-time FTLE of 2D pitching plate, (bottom row) negative-time FTLE of 3D ABC
flow. Each figure shows the FTLE field after a number of iterations of the given method. The
column of FTLE fields calculated using unidirectional composition agree well with the exact
FTLE fields computed using the standard method. The column of FTLE fields calculated
using bidirectional composition all have significant error which is aligned with the opposite-
time coherent structures. The opposite-time FTLE fields are shown in the rightmost column
for comparison with the bidirectional method. FTLE fields computed for positive-time flow
maps are blue and those computed for negative-time flow maps are red.
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Figure 8: Convergence tests for FTLE field error vs. integration time-step and grid spacing
on double-gyre.

Table 1 summarizes the results comparing each method on the three example fluid flows.
In each comparison, the standard, unidirectional and bidirectional methods are used to
compute a sequence of FTLE fields which are frames in an unsteady animation. The flow
map duration used to compute an FTLE field is T , and the time-spacing between neighboring
FTLE fields is h, so the number of animation frames per flow map duration is T/h. As
demonstrated in Section 3.1.8, this is an upper bound on the speed-up of the unidirectional
method.

In each comparison, the unidirectional method is accurate and offers the greatest speed-up
over the standard method. However, it also requires more memory than any other method.
The bidirectional method is fast and uses less memory than the unidirectional method, but
is prone to large errors in the approximate flow map and does not accurately reproduce the
FTLE field.

Contour plots of the FTLE fields computed after a number of iterations of each method
are shown in Fig. 7. The FTLE fields computed with the unidirectional method agree with
those computed using the standard method, as seen by comparing the first and second
column of Fig. 7. FTLE fields computed using the bidirectional method, shown in the third
column, have large errors. It is interesting to note that these errors are aligned with coherent
structures found in the opposite-time FTLE field, shown in the fourth column. An analysis
of this coherent error is provided in Section V of [8].

3.1.7 Example - Double Gyre

Figure 8 shows the L2 and L∞ error of the forward-time FTLE field for the double gyre
computed using the standard method with T = 16, as time-step ∆t and grid spacing ∆x
are varied. At a given grid spacing, a reference FTLE field is computed using a sufficiently
small time-step, ∆t = 10−4, so that the FTLE field may be considered exact. For small
enough time-step ∆t ≈ .001, the FTLE field error converges. All integrations are performed
using a fixed time-step, fourth order Runge-Kutta scheme.
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Figure 9: Computational time vs. Iteration (top) and L2 error vs. Iteration (bottom) for
FTLE fields of the double gyre with resolution 1024× 512.

The flow map approximation methods are only faster than the standard method when used
to compute a sequence of FTLE fields in time, as in the construction of frames for a movie.
Figure 9 compares computation time and L2 error vs. frame number (iteration #) for a
sequence of FTLE fields of the double gyre, computed using the standard, unidirectional,
and bidirectional methods. Each iteration produces an FTLE field which is a single frame
in an animation of the unsteady FTLE field. In this example, the flow map duration is
T = 16, the time spacing between each FTLE field is h = 1, and the time-step of integration
is ∆t = .01. The multi-tier unidirectional method uses four tiers.

The first FTLE field takes roughly the same time to compute using each of the meth-
ods. However, for subsequent iterations, the unidirectional and bidirectional methods are
significantly faster. The computation time of bidirectional method (a) increases with the
number of iterations, k, because integrating back from t = kh to the reference time t = 0
becomes more costly as k increases, as seen in Fig. 4. After T/2h = 8 iterations of bidi-
rectional method (a), it is advantageous to compute a new reference flow map using the
standard method. This explains the breaks in the solid red curve in part (b) of Fig. 9, as the
bidirectional method is exact at these iterations. Bidirectional method (b) overcomes this
increasing cost vs. iteration by using the flow map from the current iteration as the reference
flow map at the next iteration. However, using an approximate flow map to compute the
next approximation causes bidirectional method (b) to accumulate error more quickly than
method (a). The unidirectional method is both the fastest and most accurate method in
this comparison.

3.1.8 Computational Resources

Again, consider a sequence of time-T flow maps spaced h apart, as might be required for an
unsteady visualization. When there are many integration time-steps of size ∆t between each
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neighboring flow map, i.e. ∆t � h, then the added cost of flow map composition becomes
relatively small compared with the cost of integrating a time-h flow map.

The standard method involves (T/h) × (h/∆t) integration steps for each new FTLE field,
whereas the unidirectional method only requires h/∆t integration steps, and the bidirec-
tional method requires 2h/∆t integration steps. Assuming ∆t � h, the speed-up of the
unidirectional method over the standard method will increase as the number of frames in
the animation per flow map duration, T . In other words, as ∆t/h→ 0, the computation of
Φt0+T
t0

using the unidirectional method is T/h times faster than using the standard method,
and twice as fast as the bidirectional method.

In the examples above, all intermediate flow maps were stored in memory until no longer
useful for future computations. Regardless of any parameters of the FTLE field animation,
the standard and bidirectional methods must store a fixed number of flow maps. The
standard method stores the single flow map Φt0+T

t0
, while the bidirectional method stores

three maps: Φ0
t0 , ΦT

0 , and Φ̃t0+T
t0

. The unidirectional method, however, stores of every
intermediate time-h flow map Φkh

(k−1)h, of which there are T/h. Therefore, the memory
requirement of the unidirectional method scales linearly with the upper-bound on its speed-
up, T/h.

The memory usage of the unidirectional method scales with the dimension of the flow D,
the spatial resolution R, and the possible computational speed up of the method S, given
by T/h:

Memory (GB) ∼ S ×D ×RD (20)

=
8 B/double
10243 B/GB

× T

h
×D ×RD (21)

For example, a series of two dimensional, high-definition (1920 × 1080 resolution) FTLE
fields may be computed using the unidirectional method with up to 100× speed up using
approximately 3.1 GB of RAM. A three dimensional FTLE field with resolution 512×256×64
may be computed with up to 100× speed up with approximately 19 GB of RAM.

In the pitching plate example, velocity fields are obtained from data files which are the output
of a direct numerical simulation. Because loading velocity fields which are stored on disk is
slow, it is important to minimize the number of file loads. In the pitching plate example, all
of the velocity fields are loaded up-front and stored in memory throughout the computation.
However, velocity fields are often too large to store them all in memory, for example in large
2D or 3D simulations. After the unidirectional method is initialized, subsequent iterations
of the method only require loading velocity fields involved in the computation of a single,
time-h flow map. The standard method, however, must load velocity fields relevant to the
entire time-T flow map, requiring T/h times as many file loads as the unidirectional method.

3.2 Breakdown of classical unsteady models

Here, we examine the effectiveness of the classical models described in Section 2, for an airfoil
undergoing sinusoidal pitching or plunging. The simulations here are for a flat plate at low
Reynolds number (Re = 100), and are calculated using the immersed boundary method
of [13]. For details of the simulation, see [7].

For this low-Reynolds-number flat plate, the steady-state lift is shown as a function of angle
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Figure 10: Lift coefficient vs. angle of attack for fixed plate at Re = 100. A supercritical
Hopf bifurcation occurs at α ≈ 28◦. The dashed line represents average post-stall lift and
the dotted lines represent minimum and maximum post-stall lift.

of attack in Figure 10. At αc ≈ 28◦, a Hopf bifurcation occurs[2], and for α > αc, the flow
is unsteady, corresponding to periodic vortex shedding from the leading and trailing edges.

3.2.1 Theodorsen’s model — sinusoidally plunging airfoil

Using equations (1) and (2) it is possible to compare the thin airfoil theory and Theodorsen’s
model with the simulated response of a flat plate to sinusoidal plunging in Reynolds number
100 flow. It is also compared with an effective angle of attack approximation using a look up
table for the lift coefficient at the static angle of attack αeff(t) = tan−1(−ḣ(t)/U∞) for each
point in the maneuver; this approximation may be classified as quasi-steady. The plunging
motion is specified by the center of mass motion h(t) = −A sin(ωt).

It has been shown[9] that for reasonable Strouhal numbers and reduced frequencies k =
πfc/U∞ less than 0.5, the effective angle of attack approximation agrees well with DNS.
However, for the same range of Strouhal numbers St ∈ {.032, .064, .128}, we find that
Theodorsen’s theory agrees with DNS up to reduced frequencies of 2.0, shown in Figure 11.
This is consistent, since at larger reduced frequencies, quasi-steady assumptions break down
and it becomes important to consider flow acceleration terms.

For larger Strouhal numbers, St ∈ {.256, .512}, Theodorsen’s model disagrees with DNS
even for small reduced frequencies, shown in Figure 12. This is particularly interesting,
because these large Strouhal numbers correspond to maximum effective angles of attack
which are larger than the critical stall angle shown in Figure 10. At these Strouhal num-
bers the effective angle of attack approximation plateaus due to αeff > αc. In addition to
disagreeing with DNS in magnitude and phase, Theodorsen’s model does not describe the
higher-frequency components in the response.

The table below shows the maximum effective angle of attack associated with each Strouhal
number used above. Notice that for Strouhal numbers .256 and .512, the maximum effective

17



St = .032, Reduced Frequency k = 1.0 St = .032, Reduced Frequency k = 4.0

!"# $ $"# % %"# &

!!"'

!!"(

!!"%

!

!"%

!"(

)*+,

-
.,
//*
0*
,1
23.
/34
*/2

5,67*1839:3;<"!#=3!<%"!

3

3

>626
2?*1
2?,.
6,//

!"# !"$ !"% !"& !"' !"( !")
!#"'

!#

!!"'

!

!"'

#

#"'

*+,-

.
/-
00+
1+
-2
34/
045
+03

6-78+294:;4<="!#>4!=?"!

4

4

@737
3A+2
3A-/
7-00

Figure 11: Each curve is a plot of lift coefficient vs. time for a sinusoidally plunging flat
plate at Re = 100 and Strouhal number .032. The blue curve is the CL from DNS, the
red curve is computed using thin airfoil theory, Eq. (1), the black curve uses an effective
angle of attack approximation, and the green curve is Theodorsen’s prediction, Eq. (2).
Theodorsen’s model agrees well with DNS for reduced frequencies k < 2.0 as long as the
Strouhal number is small enough that the maximum effective angle of attack is less than the
stall angle.
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Figure 12: Each curve is a plot of lift coefficient vs. time for a sinusoidally plunging flat
plate at Re = 100 and Strouhal numbers .256 and .512. The blue curve is the CL from
DNS, the red curve is computed using thin airfoil theory, Eq. (1), the black curve uses an
effective angle of attack approximation, and the green curve is Theodorsen’s prediction, Eq.
(2). For large Strouhal numbers, Theodorsen’s model does not agree well with DNS even at
low reduced frequency. Also, there are higher frequency components which are not captured
by the models.
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Strouhal Number St = .274 Strouhal Number St = .137
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Figure 13: Each curve is a plot of lift coefficient vs. time for a sinusoidally pitching flat
plate at Re = 100 and reduced frequency k = 1.26. The blue curve is the CL from DNS, and
the green curve is Theodorsen’s prediction, Eq. (3). Theodorsen’s model matches DNS for
a flat plate pitching to an amplitude of 20◦ about the leading edge and not the half-chord,
even though the Strouhal number is larger for pitching about the leading edge.

angle of attack is larger than the critical stall angle αc ≈ 28◦.

Strouhal number (St) .032 .064 .128 .256 .512
Max effective aoa (αmax

eff ) 5.74◦ 11.37◦ 21.91◦ 38.81◦ 58.13◦

3.2.2 Theodorsen’s model — sinusoidally pitching airfoil

Similar to the case of a sinusoidally plunging airfoil, with equation (3) it is possible to
compare Theodorsen’s model with DNS for a sinusoidally pitching flat plate. Three pitching
amplitudes α ∈ {20◦, 27.1◦, 43.2◦} are examined, and for each amplitude the pitching point
is varied along the chord from the leading-edge to the trailing-edge at every quarter-chord
in between. In each case, the reduced frequency is k = 1.26. Interestingly, the agreement
between Theodorsen’s model and DNS does not depend so much on reduced frequency and
Strouhal number as in the case of sinusoidal plunging, but instead depends much more on
raw pitching amplitudes and pitching point. In Figure 13 we see that for the same angle of
attack excursion Theodorsen’s model agrees better with DNS when the plate pitches about
the leading edge, even though the Strouhal number is larger.

This is consistent with the fact that Theodorsen’s theory depends on the assumption of
attached flow over the wing surface, and pitching about the mid-chord promotes leading-
edge separation much more than pitching about the leading edge. This effect is shown in
Figure 14, where the effect of leading edge separation is exaggerated due to the large pitch
amplitude αmax = 27.1◦.

When the pitch amplitude is larger than the stall angle αc ≈ 28◦, Theodorsen’s model does
not agree with DNS even when the plate is pitched about the leading edge; see Figure 15.
This is interesting because there is a similar observation in the case of sinusoidal plung-
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Strouhal Number St = .182
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Figure 14: Leading edge separation is visualized using FTLE fields for a plate pitching to
an amplitude of 27.1◦ about the mid chord.

ing, where Theodorsen’s model begins to disagree at Strouhal numbers which correspond
to effective angles of attack larger than αc. This should not be surprising, however, since
Theodorsen’s theory is developed for infinitesimal oscillations where the flow is never sepa-
rated and the wake is assumed to be planar. Under these assumptions, Theodorsen’s model
cannot possibly take high angle of attack vortex shedding effects into account.

In addition to the lack of agreement between Theodorsen’s model and DNS for large pitching
amplitudes, there are CL variations at twice the pitching frequency, as there was in the case
of sinusoidal plunging for Strouhal numbers St ∈ {.256, .512}. Using FTLE to visualize the
flow structures, it is possible to see not only leading edge separation, but also a distortion
of the FTLE near the plate near the mid chord, as shown in Figure 16. It is likely that
natural vortex shedding at this high angle of attack is interacting with the separation due
to the airfoils pitching motion.

3.2.3 Indicial response

Compared with Theodorsen’s method of predicting response forces, indicial response, equa-
tion (4) is an empirical method which relies on knowing only the response in lift to a small
step in angle of attack. For the simulations below, the step in α was approximated by a
steep sigmoidal step of 1◦. The indicial response roughly predicts the initial peak observed
in DNS for fast pitch-up maneuvers of moderate amplitude, α = 8◦ and α = 16◦, shown in
Figure 17. However, superposition of a number of small steps fails to reproduce transient
oscillations as the initial peak dies off.

For larger angle of attack pitch-up maneuvers, say α = 32◦, the indicial response predicts
the rough form of transient lift, but doesn’t capture the jagged peak which is observed in
DNS. Because the method of indicial response involves staggered superposition of a number
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Strouhal Number St = .548 Strouhal Number St = .274
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Figure 15: Each curve is a plot of lift coefficient vs. time for a sinusoidally pitching flat plate
at Re = 100 and reduced frequency k = 1.26. The blue curve is the CL from DNS, and the
green curve is Theodorsen’s prediction, Eq. (3). For pitching amplitude αmax = 43.2◦ > αc,
Theodorsen’s model doesn’t agree with DNS, despite the pitching point.
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Figure 16: Leading edge separation is visualized using FTLE fields for a plate pitching to
an amplitude of 43.2◦ about the mid chord.
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Figure 17: (top) Comparison of lift coefficient, CL, between DNS and Indicial response for
a flat plate in pitch-up maneuver at Re = 300. (bottom) Angle of attack vs. time. (left)
Pitch-up of 8◦ with duration of 16 time steps. (right) Pitch-up of 16◦ with duration 16 time
steps

of small steps to reconstruct a large step, it is not possible for this method to predict the
periodic vortex shedding which is characteristic of high angles of attack. Therefore, even if
it is able to predict transient lifts, it is not useful for steady state prediction at large angle
of attack, as shown in Figure 18.

3.2.4 Conclusions

In this section, we have investigated the unsteady aerodynamic forces on low-Reynolds
number wings at high angle of attack and in pitch and plunge maneuvers using 2D direct
numerical simulations. The classical theories of Theodorsen andWagner have been compared
with DNS for a number of pitch and plunge maneuvers of varying Strouhal number, reduced
frequency, pitch amplitude and center. In addition to determining when these theories
break down, the flow field is investigated using FTLE to visualize relevant flow structures
to determine how the theories break down, indicating possible improvements to the models.

Comparison of Theodorsen’s model for the lift of a sinusoidally plunging flat plate with
forces from DNS showed agreement for moderate reduced frequencies k < 2.0 for a range of
Strouhal numbers for which the maximum effective angle of attack is smaller than the critical
stall angle. For the case of a sinusoidally pitching plate, agreement between Theodorsen’s
model and DNS was less dependent on Strouhal number than the position of the pitch axis
along the chord. Pitching about the mid-chord, while resulting in a smaller Strouhal number
than pitching about the leading edge, promotes leading edge separation and dynamic stall
effects which are not captured by Theodorsen’s model. However, Theodorsen’s model does
not agree with DNS for any pitch point if the angle of attack excursion is large enough to
cause periodic vortex shedding. This is an important relationship between the theory for
pitching and plunging airfoils; in particular, the theory breaks down in both cases when the
angle of attack (resp. effective angle of attack) excursion exceeds the critical stall angle.
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Figure 18: (left) Comparison of lift coefficient, CL, between DNS and Indicial response for
a flat plate in pitch-up at Re = 300 and sinusoidal pitch maneuver at Re = 100. (right)
FTLE field visualization of the periodic laminar vortex shedding which takes place after the
transients die down.

This observation is supported by the method of indicial response, where agreement between
model and data begins to break down for large pitch-up maneuvers. The inability to capture
unsteady effects due to high angle of attack is a fundamental limitation of both methods.

4 Nonlinear models for unsteady flows at fixed angle of attack

A first step towards developing models for unsteady aerodynamics is to develop models valid
at a fixed angle of attack. In this section, we summarize our results using two approaches. In
the first approach, we develop phenomenological models, which capture the essential features
observed, namely a Hopf bifurcation at a critical angle of attack, as shown in Figure 10. In
this model, the angle of attack α appears explicitly, so it is straightforward to see how it
would generalize it to other angles of attack. However, in principle, such a generalization is
difficult, as the model contains three empirical parameters which would need to be adjusted.

In the second approach, we develop more systematic models using Proper Orthogonal De-
composition (POD) and Galerkin projection. These models are very accurate for the con-
ditions they are calibrated for, but they do not generalize well to other angles of attack, or
more complex unsteady maneuvers. Thus, while the models in this section are interesting,
we expect the models of Section 6 to be more useful for actual implementation.

4.1 Phenomenological models

Recall from Figure 10 that the flow over a wing at low Reynolds number exhibits a Hopf
bifurcation at a critical angle of attack, at which the flow transitions from steady separation
to unsteady vortex shedding. The simplest system of differential equations that describes
this behavior is given by the normal form of a Hopf bifurcation [21]. In this section, we
model the transient and steady-state lift associated with an impulsively started 2D plate
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using this simple model, along with a decoupled first-order lag:

ẋ = (α− αc)µx− ωy − ax(x2 + y2)

ẏ = (α− αc)µy + ωx− ay(x2 + y2)
ż = −λz

 =⇒
ṙ = r

[
(α− αc)µ− ar2

]
θ̇ = ω

ż = −λz
(22)

The z direction is decoupled and represents the exponential decay of transient lift generated
from the impulsive start. Transforming the (x, y) system into polar coordinates, it becomes
clear that there is a fixed point at r = 0. This fixed point undergoes a subcritical Hopf
bifurcation at α = αc resulting in an unstable fixed point at r = 0 and a stable limit cycle
with radius R =

√
(α− αc)µ/a. The limit cycle represents the fluctuations in lift due to

periodic vortex shedding of a plate at an angle of attack which is larger than the stall angle.
Thus, at a particular angle of attack α, the unsteady coefficient of lift CL is constructed
from the average lift C̄L and the state variables y and z as follows

CL = C̄L + y + z

With knowledge of the actual lift vs. time from numerical experiment, it is possible to tune
the parameters (µ, λ, ω, a) with the rates of decay, period of shedding and amplitude of
stable lift fluctuations. Initial conditions of the model are chosen to start the system with
the right transient lift and phase. By properly tuning the constants with experimental data,
this model will closely reproduce the transient lift dynamics of a stationary plate for a wide
range of angles of attack α. Figure 19 shows a typical example, for α = 35◦.

It is important to note that the model (22) is specifically chosen to exhibit a supercritical
Hopf bifurcation as the angle of attack α varies through αc. Such a bifurcation is observed in
simulations and experiments (Figure 10), so for a fixed set of parameters, the model (22) may
be tuned to match the observed behavior over a range of angle of attack α. Theoretically,
one would expect such a model to be valid only for values of α close to the bifurcation
value αc, but in practice we have observed that, even for fixed parameters, the model (22)
may be tuned to match simulations reasonably closely over a wide range of parameter values,
from α = 0 to at least 35◦.

It also is possible to model the transient lift from the impulsive start by coupling z and (x, y):

ẋ = (α− αc)µx− ωy − axz
ẏ = (α− αc)µy + ωx− ayz
εż = −z + (x2 + y2)

 =⇒
ṙ = r [(α− αc)µ− az]
θ̇ = ω

εż = −z + r2
(23)

For ε � 1, trajectories quickly settle to the “slow” manifold z = x2 + y2, which reduces to
our original dynamics. This method has been useful in characterizing transients in the wake
of a cylinder[45]. Because the flat plate at high angles of attack is a bluff body, its wake
topology should be structurally equivalent to the wake behind a cylinder.

The models (22) and (23) capture reasonable dynamic behavior, but they have a severe
limitation for the present application, since the initial values of the states (x, y, z) need to
be carefully chosen in order to match the transient lift response. In practice, this transient
response is precisely what we are interested in modeling, but these initial conditions are
not known. Instead, these states are excited by external factors, such as disturbances or
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Figure 19: Coefficient of lift vs. time for stationary plate at post-stall angle α = 35◦. The
solid line represents the oscillating lift curve obtained from direct numerical simulation and
the dashed line is a the output of a low order ODE model with a Hopf bifurcation and a lag.
The inset panels show coherent structures in the flow field at instances of high, moderate
and low lift.

25



changes in angle of attack α (which can lead to the formation of leading-edge vortices, as
stated earlier). One idea for incorporating these effects is to add impulsive forcing to the
model ẋ = . . . + f(α, α̇), so that the terms f can excite the states x through a change of
angle of attack. However, this approach was not pursued in this project, as the approaches
of Sections 5 and 6 seemed more fruitful.

4.2 Models using POD and Galerkin projection

In this section, we summarize our results determining unsteady aerodynamic models using
Proper Orthogonal Decomposition (POD) and Galerkin projection. These should not be
confused with the models obtained using Balanced POD (Section 5), which yielded the
superior models in Section 6.

The evolution of a flow field via direct numerical simulation may be viewed as a high di-
mensional dynamical system u̇ = X(u), where u is a state variable representing the velocity
components at each spatial location, arranged in a long vector. Therefore, u ∈ RN where
N is the number of grid points times the number of flow variables.

To obtain a reduced order model, it is first necessary to construct a low dimensional sub-
space S ⊂ RN on which the dynamics may be projected. Given a time sequence of unsteady
velocity fields {uk ∈ RN}Mk=1 from DNS, we seek a projection PS : RN → S so that the pro-
jection error 1

M

∑M
k=1(‖uk−PSuk‖) is minimized. It has been shown that this minimization

problem is equivalent to the eigenvalue problem

Rϕ = λϕ where R = XX∗ and X =


...

...
...

u1 u2 . . . uM
...

...
...


R is a real, symmetric matrix of dimension N × N with at most M nonzero eigenvalues.
Therefore, the eigenvalue problem Rϕ = λϕ is equivalent to a simpler eigenvalue problem

Uϕ = λϕ where U = X∗X

of dimension M ×M . For M � N , this greatly reduces the computation and is known
as the method of snapshots. {ϕk}mk=1 are eigenfunctions associated with the m largest
eigenvalues of R (or U) and are known as POD modes. POD modes are typically computed
after subtracting the mean flow from each of the snapshots ui. Because of the form of
the minimization problem posed, the first k POD modes are the k most Energy-containing
modes. Although energetic modes are important, it has been shown that modes including
only a small fraction of the total energy can be dynamically important[26].

Given dynamics u̇ = X(u) and a projection PS onto a low dimensional subspace S ⊂ RN ,
it is now possible to project the discretized Navier-Stokes equations onto the subspace S,
resulting in a low order dynamical system model for the full equations of motion:

ṙ = PSX(r), where r(t) = ϕ̄+
m∑
k=1

ak(t)ϕk

The dynamics are now captured as a low dimensional ODE with the POD mode amplitudes

26



Mean Flow Eigenvalues

1 2 3 4 5 6 7 8 9 10

10−4

10−3

10−2

10−1

100

Mode

%
 E

ne
rg

y 
( !

 )

Figure 20: Mean flow and eigenvalues of POD modes for stationary flat plate at α = 45◦

and Re= 100.

as variables:

〈ṙ −X(r), ϕk〉 = 0 =⇒ 〈ȧjϕj , ϕk〉 − 〈X(r), ϕk〉 = 0

=⇒ ȧk = 〈X(r), ϕk〉 for k = 1, . . . ,m

In the current study, u̇ = X(u) is the momentum equation:

u̇ = −(u · ∇)u+ ν∇2u−∇p︸ ︷︷ ︸
X(u)

4.2.1 POD/Galerkin model, α = 45◦

From simulation data of unsteady flow around a fixed plate at Re = 100 and α = 45◦ which
are allowed to reach steady state vortex shedding, POD modes are computed and shown in
Figure 21. In this configuration the plate sheds vorticity periodically from the leading and
trailing edges. By first subtracting the mean flow, it is possible to obtain POD modes which
are in energetic pairs as seen in the eigenvalue plot, Figure 20. Because of an approximate
convective symmetry in the periodic shedding case, these POD modes come in pairs which
appear to be phase shifted by π/2.

4.2.2 POD/Galerkin model, α = 30◦

Figure 23 shows POD modes for the unsteady flow around a fixed plate at Re = 100 and
α = 30◦. The eigenvalue plot, Figure 22, is similar to the α = 45◦ case, except that the
pairs are not as closely matched.

A low-order model is obtained by Galerkin projecting the Navier-Stokes equations onto these
modes. Using the projected dynamics, the POD mode coefficients are integrated forward in
time and used to reconstruct an approximate flow field. From the approximate velocity field
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Figure 21: POD modes for stationary flat plate at α = 45◦ and Re= 100.
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Figure 22: Mean flow and eigenvalues of POD modes for stationary flat plate at α = 30◦

and Re= 100.
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Figure 23: POD modes for stationary flat plate at α = 30◦ and Re= 100.
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reconstruction, an FTLE field is computed which agrees very well with the FTLE field from
DNS, as can be seen in Figure 24. The comparison of POD mode amplitudes between DNS
and projected dynamics is shown in Figure 25. It is interesting that the model agrees well
with data for the first two modes, but not for the higher order modes. However, the fact
that the Lagrangian coherent structures are preserved suggests that the first two modes are
sufficient for reconstructing an accurate model. This is not entirely surprising considering
the very simple sinusoidal vortex shedding pattern and force in time. For higher Reynolds
number flows, the lift distribution and wake structures involve higher frequency oscillations
which would presumably require more modes to approximate.

Full DNS Reconstructed

Figure 24: FTLE field for DNS vs. reconstruction from Galerkin projected dynamics for
stationary flat plate at α = 30◦ and Re= 100.

5 Balanced model reduction

The models developed in the previous section demonstrate good agreement for the conditions
at which they were calibrated: namely, they predict the unsteady lift forces at a single angle
of attack. However, the phenomenological models of section 4.1 are obtained in an ad hoc
fashion, and while the POD modes of section 4.2 are more systematic, it is not clear how to
extend them to more general situations, for instance in which one has a gust that changes
the angle of attack or speed of the freestream.

In order to represent these more complex, agile maneuvers, it is desirable to use a model
reduction procedure that includes inputs and outputs: for instance, disturbances such as the
instantaneous angle of attack or freestream speed can be regarded as inputs, and desired
quantities such as lift and drag forces may be viewed as outputs. Furthermore, when cast
in an input-output setting, these models may be readily used for control design.

Balanced truncation is an effective technique for obtaining reduced-order models of input-
output systems. However, it is intractable for large systems such as fluids problems. An
approximation of balanced truncation, called Balanced POD, was developed by Rowley [49],
and has been shown to produce much more accurate models than standard POD/Galerkin
models [26]. However, a criticism of this technique is that in order to obtain the models, one
must simulate the adjoint equations, and adjoint simulations are not always readily available.
(Of course, they are never available for experiments.)
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Figure 25: Mode amplitudes of DNS vs. reconstruction from Galerkin projected dynamics
for stationary flat plate at α = 30◦ and Re= 100.

In the following subsection, we show how the Balanced POD method may be applied even
when adjoint information is not available. A major result is that the models obtained by
Balanced POD are precisely those obtained by an existing system identification method
called the Eigensystem Realization Algorithm (ERA).

5.1 Balanced POD models without adjoints

In this section, we summarize the steps involved in approximate balanced truncation (bal-
anced POD), and the Eigensystem Realization Algorithm, and show that they are equivalent.

Balanced truncation involves first constructing a a coordinate transformation that “balances”
a linear input-output system, in the sense that certain measures of controllability and ob-
servability (the Gramian matrices) become diagonal and identical [43]. A reduced-order
model is then obtained by truncating the least controllable and observable states, which
correspond to the smallest diagonal entries in the transformed system. Unfortunately, the
exact balanced truncation algorithm is not tractable for the large state dimensions encoun-
tered in fluid mechanics. However, an approximate, snapshot-based balanced truncation
algorithm, referred to as Balanced Proper Orthogonal Decomposition (balanced POD) was
proposed in [49], and has been used successfully in several examples [27, 1, 5].
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The second technique, the eigensystem realization algorithm (ERA), has been used both for
system identification and for model reduction, and it is well known that the models produced
by ERA are approximately balanced [17, 29]. Here we show further that, theoretically,
ERA produces exactly the same reduced order models as balanced POD. This equivalence
indicates that ERA can be regarded as an approximate balanced truncation method, in the
sense that, before truncation, it implicitly realizes a coordinate transformation under which
a pair of approximate controllability and observability Gramians are exactly balanced. This
feature distinguishes ERA from other model reduction methods that first realize truncations
and then balance the reduced order models. Note that in ERA the Gramians, and the
balancing transformation itself, are never explicitly calculated, as we will also show in the
following discussions.

For both techniques, we will consider a high-dimensional, stable, discrete-time linear system,
described by

x(k + 1) = Ax(k) +Bu(k)
y(k) = Cx(k),

(24)

where k ∈ Z is the time step index, u(k) ∈ Rp denotes a vector of inputs (for instance,
actuators or disturbances), y(k) ∈ Rq a vector of outputs (for instance, sensor measurements,
or simply quantities that one wishes to model), and x(k) ∈ Rn denotes the state variable
(for instance, flow variables at all gridpoints of a simulation). These equations may arise,
for instance, by discretizing the Navier-Stokes equations in time and space, and linearizing
about a steady solution. The goal is to obtain an approximate model that captures the same
relationship between inputs u and outputs y, but with a much smaller state dimension:

xr(k + 1) = Arxr(k) +Bru(k)
y(k) = Crxr(k)

(25)

where the reduced state variable xr(k) ∈ Rr, r � n. We consider the discrete-time setting,
because we are primarily interested in discrete-time data from simulations or experiments.

5.1.1 Balanced POD

Here, we give only a brief overview of the balanced POD algorithm, and for details of the
method, we refer the reader to [49]. The algorithm involves three main steps:

• Step 1: Collect snapshots. Run impulse-response simulations of the primal system
(24) and collect mc + 1 snapshots of states x(k) in mcP + 1 steps:

X =
[
B APB A2PB · · · AmcPB

]
, (26)

where P is the sampling period. In addition, run impulse-response simulations for the
adjoint system

z(k + 1) = A∗z(k) + C∗v(k) (27)

where the asterisk ∗ stands for adjoint of a matrix, and collect mo + 1 snapshots of
states z(k) in moP + 1 steps:

Y =
[
C∗ (A∗)P C∗ (A∗)2P C∗ · · · (A∗)moP C∗

]
. (28)

Calculate the generalized Hankel matrix,

H = Y ∗X. (29)
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• Step 2: Compute modes. Compute the singular value decomposition of H:

H = UΣV ∗ =
[
U1 U2

] [Σ1 0
0 0

] [
V ∗1
V ∗2

]
= U1Σ1V

∗
1 (30)

where the diagonal matrix Σ1 ∈ Rn1×n1 is invertible and includes all non-zero singular
values of H, n1 = rank(H), and U∗1U1 = V ∗1 V1 = In1×n1 . Choose r ≤ n1. Let Ur and
Vr denote the sub-matrices of U1 and V1 that include their first r columns, and Σr the
first r × r diagonal block of Σ1. Calculate

Φr = XVrΣ
− 1

2
r ; Ψr = Y UrΣ

− 1
2

r . (31)

where the columns of Φr and Ψr are respectively the first r primal and adjoint modes
of system (24). The two sets of modes are bi-orthogonal: Ψ∗rΦr = Ir×r.

• Step 3: Project dynamics. The system matrices in the reduced order model (25) are

Ar = Ψ∗rAΦr; Br = Ψ∗rB; Cr = CΦr. (32)

Note that the n× n controllability/observability Gramians are approximated by the matri-
ces XX∗ and Y Y ∗. The reduced-order model (25) is obtained by considering a subspace
x = Φrxr, and projecting the dynamics (24) onto this subspace using the adjoint modes
given by Ψr. It was shown in [49] that Φr and Ψr respectively form the first r columns of
the balancing transformation/inverse transformation that exactly balance the approximate
controllability/observability Gramians XX∗ and Y Y ∗.

5.1.2 The eigensystem realization algorithm

The eigensystem realization algorithm (ERA) was proposed in [28] as a system identification
and model reduction technique for linear systems. The algorithm follows three main steps
[28, 29]:

• Step 1: Run impulse-response simulations/experiments of the system (24) for (mc +
mo)P +2 steps, where mc and mo respectively reflect how much effect is taken for con-
sidering controllability and observability, and P again is the sampling period. Collect
the snapshots of the outputs y in the following pattern:(

CB, CAB, CAPB, CAP+1B, . . .

CAmcPB, CAmcP+1B, . . . CA(mc+mo)PB, CA(mc+mo )P+1B
)
.

(33)

The terms CAkB are commonly called Markov parameters. Construct a generalized
Hankel matrix H ∈ Rq(mo+1)×p(mc+1)

H =


CB CAPB · · · CAmcPB

CAPB CA2PB · · · CA(mc+1)PB
...

...
. . .

...
CAmoPB CA(mo+1)PB · · · CA(mc+mo)PB

 . (34)

• Step 2: Compute SVD ofH, exactly as in (30), to obtain U1, V1, Σ1. Let r ≤ rank(H).
Let Ur and Vr denote the sub-matrices of U1 and V1 that include their first r columns,
and Σr the first r × r diagonal block of Σ1.
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• Step 3: The reduced Ar, Br and Cr in (25) are then defined as

Ar = Σ
− 1

2
r U∗rH

′VrΣ
− 1

2
r ;

Br = the first p columns of Σ
1
2
r V
∗
1 ;

Cr = the first q rows of UrΣ
1
2
r

(35)

where

H ′ =

 CAB CAP+1B · · · CAmcP+1B
...

...
. . .

...
CAmoP+1B CA(mo+1)P+1B · · · CA(mc+mo)P+1B

 , (36)

which can again be constructed directly from the collected snapshots (33).

5.1.3 Theoretical equivalence between ERA and balanced POD

The first observation is that, with X and Y given by (26) and (28), the generalized Hankel
matrices obtained in balanced POD and ERA, respectively by (29) and (34), are theoretically
identical. The theoretical equivalence between the two algorithms then follows immediately:
First, H ′ given in (36) satisfies H ′ = Y ∗AX, which implies the matrices Ar obtained in the
two algorithms are identical. To show the equivalence of Br, first note that the SVD (30)

leads to Σ
− 1

2
1 U∗1H = Σ

1
2
1 V
∗
1 , which, by definition of Ur, Vr, Σr, implies Σ

− 1
2

r U∗rH = Σ
1
2
r V ∗r .

(Note that it does not implyH = UrΣrV
∗
r , since UrU∗r is not the identity.) Thus, in balanced

POD, Br = Ψ∗rB = Σ
− 1

2
r U∗r Y

∗B, which equals the first p columns of Σ
− 1

2
r U∗rH = Σ

1
2
r V ∗r ,

which is the Br given by ERA. Similarly, the SVD (30) leads to HV1Σ
− 1

2
1 = U1Σ

1
2
1 and then

HVrΣ
− 1

2
r = UrΣ

1
2
r . Thus, in balanced POD, Cr = CΦr = CXVrΣ

− 1
2

r , which equals the first
q rows of HVrΣ

− 1
2

r = UrΣ
1
2
r , the Cr given by ERA. In summary, we have:

Main result. The reduced system matrices Ar, Br and Cr generated in balanced POD and
ERA, respectively by (32) and (35), are theoretically identical.

In practice, these two algorithms may generate slightly different reduced order models, be-
cause the Hankel matrices calculated in the two algorithms are usually not exactly the same,
due to small numerical inaccuracies in adjoint simulations, and/or in matrix multiplications
needed to compute the sub-blocks in the Hankel matrices. In the following discussions, we
compare these two algorithms in more detail.

5.1.4 Comparison between ERA and balanced POD

While ERA and balanced POD produce theoretically identical reduced-order models, the
techniques differ in several important ways, both conceptually and computationally. Neither
ERA nor balanced POD calculate Gramians explicitly, but balanced POD does construct
approximate controllability and observability matrices X and Y ∗, from which one calculates
the generalized Hankel matrix H and balancing transformation. Balanced POD thus incurs
additional computational cost, because one needs to construct the adjoint system (27), run
adjoint simulations for Y , and then calculate each block of H by matrix multiplication.
Thus we see that the advantages of ERA include:
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Steps in computing Approximate time (CPU hours)
reduced-order models balanced POD ERA
1. Linearized impulse response 2 4
2. Computation of POD modes 2 2
3. Adjoint impulse responses 30 -

(10 in number)
4. Computation of the Hankel matrix 7 0.2
5. Singular value decomposition 0.05 0.05
6. Computation of modes 1 -
7. Computation of models 0.02 0.02

Table 2: Comparison of the computational times required for various steps of the algorithms
using balanced POD and ERA. The times are given for a 10-mode output projected system.
The Hankel matrix is constructed using (a) 200 state-snapshots from each linearized and
adjoint simulations for balanced POD, and (b) 400 Markov parameters (outputs) for ERA.

1. Adjoint-free: ERA is a feasible balanced truncation method for experiments, since
it needs only the output measurements from the response to an impulsive input. Note
that ERA has been successfully applied in several flow control experiments [11, 10],
as a system-identification technique rather than a balanced-truncation method. In
practice, input-output sensor responses are often collected by applying a broadband
signal to the inputs, and the ARMARKOV method [3, 37] can then be used to identify
the Markov parameters, or even directly the generalized Hankel matrix, from the input-
output data history.

2. Computational efficiency: For large problems, typically the most computationally
expensive component of computing balanced POD is constructing the generalized Han-
kel matrix H in (29), as this involves computing inner products of all of the (large)
primal and adjoint snapshots with each other. ERA is significantly more efficient at
constructing the matrix H in (34), since only the first row and last column of block
matrices, i.e., the (mc + mo + 1) Markov parameters, need be obtained by matrix
multiplication. All the other mc ×mo block matrices in H are copies of other blocks,
and need not be recomputed. For balanced POD, the matrix H is obtained by com-
puting all the (mc + 1) × (mo + 1) matrix multiplications (inner products) between
corresponding blocks in Y ∗ and X in (29). Thus, for example, if mc = m0 = 200,
the computing time needed for constructing H in ERA will be about only 1% of that
in balanced POD. See Table 2 for a detailed comparison on computational efficiency
between balanced POD and ERA in an example of the flow past an inclined flat plate,
used in [39].

At the same time, balanced POD also provides its own advantages:

1. Sets of bi-orthogonal primal/adjoint modes: Balanced POD provides sets of bi-
orthogonal primal/adjoint modes, the columns of Φr and Ψr. In comparison, without
the adjoint system, ERA cannot provide the primal and adjoint modes. At best, the
primal modes may be computed, using the first equation in (31), if the matrix X (26)
is stored (in addition to the Markov parameters). But the adjoint modes cannot be
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computed without solutions of the adjoint system. In this sense, balanced POD incor-
porates more of the physics of the system (the two sets of bi-orthogonal modes), while
ERA is purely based on input-output data of the system. The primal/adjoint modes
together can be useful for system analysis and controller/observer design purposes in
several ways: for instance, in flow control applications, a large-amplitude region from
the most observable mode (the leading adjoint mode) can be a good location for actu-
ator placement. Also, although balanced POD is a linear method, a nonlinear system
can be projected onto these sets of modes to obtain a nonlinear low-dimensional model.
For instance, the transformation x = Φrxr, xr = Ψ∗rx can be employed to reduce a full-
dimensional nonlinear model ẋ = f(x) to a low-dimensional system ẋr = Ψ∗rf(Φrxr).
Finally, if parameters (such as Reynolds number or Mach number) are present in the
original equations, balanced POD can retain these parameters in the reduced-order
models. When the values of parameters change, the reduced order model by balanced
POD may still be valid and perform well; see [27] for an application to linearized
channel flow.

2. Unstable systems: Balanced POD has been extended to neutrally stable [40] and
unstable systems [1]. In those cases, one first calculates the right/left eigenvectors
corresponding to the neutral/unstable eigenvalues of the state-transition matrix A,
using direct/adjoint simulations. Using these eigenvectors, the system is projected
onto a stable subspace and then balanced truncation is realized for the stable subsys-
tem. ERA for unstable systems is still an open problem, if adjoint operators are not
available. However, we note that, once the stable subsystem is obtained, ERA can
still be applied to it and efficiently realize its approximate balanced truncation.

ERA for systems with high-dimensional outputs. The method of output projection
proposed in [49] makes it computationally feasible to realize approximate balanced trunca-
tion for systems with high-dimensional outputs—for instance, if one wishes to model the
entire state x, say the flow field in the entire computational or experimental domain. This
method involves projecting the outputs onto a small number of POD modes, determined
from snapshots of y from the impulse-response dataset. This method can be directly incor-
porated into ERA as follows: First, run impulse response simulations of the original system
and collect Markov parameters as usual. Then, compute the leading POD modes of the
dataset of Markov parameters and stack them as columns of a matrix Θ. Left multiply
those Markov parameters by Θ∗ to project the outputs onto these POD modes. A gener-
alized Hankel matrix is then constructed using these modified Markov parameters, and the
usual steps of ERA follow.

5.2 Balanced truncation for periodic systems

In order to model vortex shedding phenomena, as arise for wings at high angles of attack,
the techniques for balanced model reduction need to be extended to periodic systems. This
extension is straightforward, but somewhat complex, and is the subject of the current section.
In this context, it is most convenient to consider discrete-time systems, which may be viewed
as a temporal discretization of the Navier-Stokes equations.

In particular, we consider linear discrete-time periodic systems of the form

x(k + 1) = A(k)x(k) +B(k)u(k); y(k) = C(k)x(k), (37)
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with state x ∈ Cn, input u ∈ Cp, output y ∈ Cq, and T -periodic matrix coefficients
A(·), B(·), C(·). The transition matrix in (37) is F(j,i) := A(j − 1)A(j − 2) · · ·A(i) for j > i,
where F(i,i) = In×n. Periodicity implies that the eigenvalues of F(j+T,j) are independent of j.
The neutrally stable case where the spectral radius ρ(F(j+T,j)) = 1 will be discussed later.
For now, assume the system is exponentially stable, i.e. ρ(F(j+T,j)) < 1. The controllability
and observability Gramians of (37) are then well defined and are T -periodic in j [60]:

Wc(j) :=
j−1∑
i=−∞

F(j,i+1)B(i)B(i)∗F ∗(j,i+1);

Wo(j) :=
∞∑
i=j

F ∗(i,j)C(i)∗C(i)F(i,j),

(38)

where ∗ denotes the adjoint operator.

A standard lifting procedure [42] recasts (37) in T input-output (I/O) equivalent LTI forms:

x̃j(t+ 1) = Ãj x̃j(t) + B̃j ũj(t);

ỹj(t) = C̃j x̃j(t) + D̃j ũj(t),
(39)

with j = 1, . . . , T , where t is the time variable, j parameterizes the lifted systems, the
state x̃j(t) = x(j + tT ) is periodically sampled from (37), the original inputs and outputs
over each period are arranged as Cp T and Cq T column vectors ũj(t) = [u(j + tT + i)]T−1

i=0

and ỹj(t) = [y(j + tT + i)]T−1
i=0 , and the definitions of the constant matrices Ãj , B̃j , C̃j and

D̃j readily follow from the variations of parameters formula in (37), e.g., Ãj = F(j+T,j).
Assuming exponential stability, the controllability and observability Gramians of the j-th
lifted LTI system are

W̃jc :=
∞∑
i=0

ÃijB̃jB̃
∗
j

(
Ãij

)∗
; W̃jo :=

∞∑
i=0

(
Ãij

)∗
C̃∗j C̃jÃ

i
j . (40)

The following statement follows from the periodicity of (37).

Proposition 5.1. W̃jc = Wc(j) and W̃jo = Wo(j) for all j = 1, . . . , T .

Proposition 5.1 enables us to enjoy the best of both worlds: Whereas lifting enables an
appeal to LTI balanced truncation in the lifted domain, as discussed through the remainder
of the paper, Gramian computations can be carried in the original periodic setting, where
the dimensions of the input and output spaces are much lower: p and q instead of Tp and
Tq.

5.2.1 Factorization of empirical Gramians using snapshot-based matrices

In snapshot-based methods [32, 49], the exact Gramians are substituted by approximate
empirical Gramians where the infinite series in (38) are truncated [12, 61, 55] at a finite
m <∞:

Wce(j;m) :=
j−1∑

i=j−m
F(j,i+1)B(i)B(i)∗F ∗(j,i+1);

Woe(j;m) :=
j+m−1∑
i=j

F ∗(i,j)C(i)∗C(i)F(i,j).

(41)
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When the system is exponentially stable, truncation is justified by an induced norm bound
on the truncation error, obtained by a geometric series argument and an appeal to Propo-
sition 5.1:

Lemma 5.2. Assume that the linear periodic system (37) is exponentially stable and let m
be an integer multiple of the period, m = l T . Then the following induced norm error bounds
hold:

‖Wc(j)−Wce(j;m)‖
‖Wc(j)‖

6 ‖F l(j+T,j)‖2;

‖Wo(j)−Woe(j;m)‖
‖Wo(j)‖

6 ‖F l(j+T,j)‖2.
(42)

Empirical Gramians can be factorized using snapshot-based matrices.

Proposition 5.3. Let B(i), i = 1, . . . , p, denote the i-th column of B, and let X(i) ∈ Cn×m

be defined as

X(i)(j;m) :=
[
F(j,j−m+1)B

(i)(j −m),

F(j,j−m+2)B
(i)(j −m+ 1), . . . , B(i)(j − 1)

]
for each j = 1, . . . , T and the horizon length m. Finally, define the matrix of snapshots

X(j;m) :=
[
X(1)(j;m), . . . , X(p)(j;m)

]
∈ Cn×mp.

Then Wce(j;m) = X(j;m)X(j;m)∗.

As illustrated in Figure 26(a), the columns of X(j;m) are snapshots of impulse-response
simulations of the system (37), justifying the term empirical Gramian: Invoking the T -
periodicity of B(·) and F (·, ·)(e.g. F(j,j−m+T+1) = F(j−T,j−m+1)), one observes that the
m columns of X(i)(m; j) are samples at times j − kT , k = 0, . . . , l − 1 of trajectories of
simulations initiated at x(j −m+ t) = B(i)(j −m+ t− 1), t = 1, . . . , T , assuming m = lT .
In total, Tp simulations and mp snapshots are needed to construct X(j;m).

An analogous observation applies to the empirical observability Gramian.

Proposition 5.4. Let C(i), i = 1, . . . , q, denote the i-th row of C, and let Y (i) ∈ Cn×m be
defined as

Y (i)(j;m) :=
[
F ∗(j+m−1,j)C

(i)(j +m− 1)∗,

F ∗(j+m−2,j)C
(i)(j +m− 2)∗, . . . , Ci(j)∗

]
for each j = 1, . . . , T and the horizon length m. Finally, let

Y (j;m) :=
[
Y (1)(j;m), . . . , Y (q)(j;m)

]
∈ Cn×mq.

Then Woe(j;m) = Y (j;m)Y (j;m)∗.
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ic = [B(j −m + T − 1)](i)

· · ·

· · ·
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(a)

· · ·

· · ·
...

· · ·

time = t(j + 1) t(j + T ) t(j + m)t(j + m− 1)

} impulse-response
simulations

T adjoint

ic= [C(j + m− T )∗](i)

ic= [C(j + m− 1)∗](i)

(b)

Figure 26: (a) The T impulse-response simulations corresponding to the i-th control input.
(b) The T adjoint impulse-response simulations corresponding to the i-th adjoint control
input.

As illustrated in Figure 26(b), Y (j,m) can be obtained from simulations of the adjoint
system

z(k + 1) = Â(k)z(k) + Ĉ(k)v(k) (43)

where k = j, . . . , j + m − 1, z ∈ Cn, v ∈ Cq, Â(k) := A(2j +m− k − 1)∗ and Ĉ(k) :=
C(2j +m− k − 1)∗. By periodicity, Tq adjoint simulations, and in total mq snapshots
taken at time j + kT , k = 1, . . . , l are needed to construct Y (j;m).

5.2.2 Balanced truncation using the method of snapshots

Fix a time 1 6 j 6 T . Justified by Propositions 5.3 and 5.4 and Lemma 5.2, letX(j;mc) and
Y (j;mo) be computed, allowingmc 6= mo, as factors of the empirical GramiansWce(j;mc),Woe(j;mo).
By Proposition 5.1, they can be also used as factors of the empirical Gramians of the
j-th lifted system (39). The method of snapshots presented in [49] then leads to ap-
proximate balanced truncations in the lifted LTI setting, as follows: Compute the SVD
Y (j;mo)∗X(j;mc) = UΣV ∗, and the transformations Φ, Ψ that exactly balance the empir-
ical Gramians of the lifted system

Φ = X(j;mc)V Σ−1/2; Ψ = Y (j;mo)UΣ−1/2. (44)

Let Φr,Ψr be the first r columns of Φ and Ψ, comprising the leading bi-orthogonal balancing
and adjoint modes of the j-th lifted system. ( Note that to simplify notation, the dependence
of Φ, Ψ, Φr, Ψr on j is suppressed. ) The reduced state z̃j(t) ∈ Cr is defined by the
projection z̃j(t) = Ψ∗rx̃j(t) = Ψ∗rx(j + tT ) and the estimated full state x(j + tT ) ≈ Φrz̃j(t).
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The reduced model of order r, in the lifted setting, reads

z̃j(t+ 1) = Ψ∗rÃjΦrz̃j(t) + Ψ∗rB̃j ũj(t);

ỹj(t) = C̃jΦrz̃j(t) + D̃j ũj(t).
(45)

I/O equivalence of (37) to the lifted (39) means that the reduced-order system provides the
sought I/O approximation of (37). Note that improved numerical stability of the computa-
tions above can be achieved by first representing each of the factors X(j;mc) and Y (j;mo)
in terms of leading orthogonal bases, obtained, e.g., by SVD or by Krylov methods.

We comment in closing on the possibility to “un-lift” the reduced-order lifted system. As
discussed in [60], the exact Gramians solve an allied periodic Lyapunov equation, thus
providing an exact periodic balancing and an “un-lifted” balanced truncation in the periodic
setting. Using the method of snapshots, There are two computational shortcoming to that
approach in the current problem. First, the computational burden is high when T �
1. Second, the truncated empirical Gramians used here do not form an exact solution of
the periodic Lyapunov equation. Un-lifting is nonetheless a simple task if the balancing
requirement is limited to the periodically sampled system (i.e., to a lifted system for one,
fixed j). The following inductive procedure is one possible solution: Fix Φ(j) := Φr and
Ψ(j + T − 1) := Ψr. Let P (j + i) be the rank-r orthogonal projection on Im(F(j+i,j)Φ(j))
and let Φ(j + i+ 1) = Ψ(j + i) ∈ Cn×r, i = 0, . . . , T − 2, satisfy P (j + i) = Φ(j + i +
1)Ψ(j+i)∗. Then a periodic realization of the reduced order system is defined with Ar(k) :=
Ψ(k)∗A(k)Φ(k), Br(k) := Ψ(k)∗B(k) and Cr(k) := C(k)Φ(k).

5.2.3 Output projection method

The computations delineated above require an untenable number of adjoint simulations
when very high dimensional outputs are considered; e.g., when the output is set identical
to the state, such that one can use state response data in design of an optimal controller
(e.g. linear-quadratic regulator) or to analyze system dynamics in detail. In the LTI case
[49] proposed to project the output on the (few) leading POD modes of the dataset formed
by the impulse response simulations. Thus one invokes the kinematic significance of POD
modes, to reduce the dimension of the output space, but avoids the weakness of standard
POD models that use them as dynamic states. Here we extend the output projection method
to periodic systems.

The I/O map of the j-th lifted LTI system (39) is determined by the Tq × Tp dimensional
impulse-response matrices {G̃j(t)}. The output-projected lifted system

x̃j(t+ 1) = Ãj x̃j(t) + B̃j ũj(t);

ỹj(t)P = P̃j

(
C̃j x̃j(t) + D̃j ũj(t)

)
,

(46)

is designed to best approximate the exact impulse response of the original lifted system.
Ideally, the low-rank orthogonal projection matrix P̃j should thus satisfy

P̃j = argmin
{P̃j∈Pr̃op}

( ∞∑
t=0

||G̃j(t)− P̃jG̃j(t)||2
)
, (47)

where Pr̃op is the space of orthogonal projections of rank r̃op � Tq. When the Frobenius
norm || · ||F is used in (47), it becomes a standard projection problem. Its solution is
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P̃j = Θ̃jΘ̃∗j , where the columns of Θ̃j are the leading r̃op POD modes of the datasets
{G̃j(i)}∞i=0.

As described above, the optimal P̃j is generically a full matrix. Thus, ỹj(t)P = P̃j ỹj(t) is no
longer the lifted representation of the output of a periodic system, and the projected system
cannot be “un-lifted". Rather, for each t, the value of ỹj(t)P is determined by the original
response along an entire period. In particular, we lose the ability to compute the Gramian
in the original periodic setting. To avoid this problem we impose on (47) the additional
condition that the projection has a block diagonal form

P̃j = diag
[
P̃j(1), · · · , P̃j(T )

]
(48)

where each q × q diagonal block is a rank-rop orthogonal projection with r̃op = ropT . This
enables to un-lift the projected lifted system (46) to an output-projected time-periodic system

x(k + 1) = A(k)x(k) +B(k)u(k);
y(k)P = P (k)C(k)x(k),

(49)

where the T -periodic, rank-rop orthogonal projection P is defined by P (j + tT + i) =
P (j + i) := P̃j(i+ 1), i = 0, . . . , T − 1. The constrained optimization problem (47)-(48) is
solved as an equivalent set of unconstrained problems in the periodic setting, invoking the
correspondence of the T , q × pT dimensional blocks of G̃j(t), G(j+tT+i, j), i = 0, . . . , T−1,
to the impulse response of (37), as detailed in [6]:

Proposition 5.5. Using the Frobenius norm, the solution of the constrained optimization
problem (47) and (48) is equivalent to the combined solution of the problems

P̃j(i+ 1) = argmin
{P̃j(i+1)∈Prop}

( ∞∑
t=0

∥∥∥G(j + tT + i, j)

−P̃j(i+ 1)G(j + tT + i, j)
∥∥∥2

F

)
,

for i = 0, . . . , T − 1.

Proof. By a reduction to a standard projection problem.

The computation of the structurally constrained optimal P̃j of the form (48) is thus reduced
to T unconstrained optimization problems for each P (k), k = j, · · · , j+T−1, in the periodic
setting. Following standard POD rationale, the solutions are P (k) = Θ(k)Θ(k)∗, where the
rop columns of Θ(k) are the leading POD modes of the dataset {G(tT + k, j)}∞t=0, and the
approximation error between the output-projected system and the original system is

∞∑
t=0

||G̃j(t)− P̃jG̃j(t)||2F

=
j+T−1∑
i=j

∞∑
t=0

∥∥∥G(j + tT + i, j)− P̃j(i+ 1)G(j + tT + i, j)
∥∥∥2

F

=
j+T−1∑
i=j

q∑
m=rop+1

λ(i)m
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where for each i, λ(i)1, . . . , λ(i)q are the descending-ordered eigenvalues
∑∞

t=0G(tT+i, j)G(tT+
i, j)∗. The POD modes can be computed by the method of snapshots [56], applied to datasets
comprising the columns of the impulse-response matrices {G(tT + i, j)}st=0. Conveniently,
provided that mc > (s+ 1)T , periodicity implies that data required to compute these snap-
shots have already been obtained during the computation ofX(j;mc), as described in § 5.2.1.
For instance, the matrix C(j)X(j;mc) includes the columns of matrices {G(j + tT, j)}mc/Tt=1 .

The empirical factor Y (j;mo) of the corresponding observability Gramian

WoP (j) =
∞∑
i=j

F ∗(i,j)C(i)∗Θ(i)Θ(i)∗C(i)F(i,j)

is needed in order to realize the snapshot-based approximate balanced truncation for the
output-projected system (49). This is accomplished with only Trop (rop � q) impulse-
response simulations of the adjoint time-periodic system corresponding to the output-projected
system (49), whose control input is rop-dimensional.

In closing we note that, for additional simplicity and a requirement of a single SVD com-
putation, one can also use a single, time-invariant output projection. Under this constraint,
the optimal selection is P = ΘΘ∗, where the columns of Θ are the leading POD modes
of the entire impulse-response {{G(tT + k, j)}st=0}j+T−1

k=j of (37). This stronger constraint
implies further reduction in matching, when compared with the optimal solution in the lifted
domain.

5.2.4 Summary: procedures of balanced POD for periodic systems

Following the terminology in [49], the approximate balanced truncation method for linear,
time-periodic systems is termed a lifted balanced POD. Its main steps include:

• Step 0: Fix a time j, 1 6 j 6 T , as the time point for lifting.

• Step 1: Run Tp impulse-response simulations to obtain mcp snapshots and form the
n×mcp dimensional X(j;mc) as described in § 5.2.1.

• Step 2: Compute y = Cx from stored states in simulations carried to compute
X(j;mc). Solve for the POD problems for the periodically sampled y(j + tT + i),
to obtain the output-projection matrices Θ(j + i), i = 0, · · · , T − 1.

• Step 3: Run Trop impulse-response simulations of the adjoint output-proejcted system,
to form the n×morop dimensional matrix Y (j;mo) as described in § 5.2.1.

• Step 4: Compute the SVD of Y (j;mo)∗X(j;mc) and the balancing modes for the lifted
system given by (44).

• Step 5: Compute the reduced lifted system (45).

Variants include skipping Step 2, when the output dimension q is small, and using a single,
time-invariant output projection, as discussed in § 5.2.3. The reduced system can be un-
liftted to a periodic system, e.g., as described in closing § 5.2.2. As in [49], an obvious
dual version of the algorithm addresses the case of a high-dimensional input space, with
only few outputs. This case is motivated by systems susceptible to distributed disturbances,
simultaneously effecting the entire state (e.g., B = I).
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5.2.5 The neutrally stable case

Consider a linear periodic system (37) that arises from linearization of a system around an
asymptotically stable periodic orbit. By Floquet theory [25], in this case Ãj = F(j+T,j) is only
neutrally stable, due to one unity eigenvalue that corresponds to persisting perturbations
along the periodic orbit in the linearization. Balanced truncation cannot be directly applied
to a neutrally stable system, as the infinite series used to define Gramians may diverge.

[1] presented an extended version of balanced POD for unstable LTI systems that have small
unstable dimensions. Following the idea presented in [66], it decomposes the system dynam-
ics into stable and unstable parts. Then it applies approximate balanced truncation to the
stable dynamics while keeping the unstable dynamics exactly. This method is conceptually
applied here to periodic systems through the lifted setting, with all computations executed
in the periodic setting. First, for a given lifting time j, define a projection onto the stable
subspace Es

(
Ãj

)
by Pj = In×n −

vjw
∗
j

w∗j vj
where wj , vj ∈ Cn are the left/right eigenvectors of

Ãj corresponding to the unity eigenvalue. Dynamics of the neutrally stable lifted system (39)
is thus restricted to the stable subspace of Ãj :

x̃j(t+ 1)s = Ãj x̃j(t)s + PjB̃j ũj(t);
ỹj(t)s = C̃jPj x̃j(t)s + D̃j ũj(t),

(50)

where x̃j(t)s = Pj x̃j(t). Lifted balanced POD can be realized to this projected system
describing stable dynamics. Let Φs

rs and Ψs
rs be the matrices including the leading rs

balancing and adjoint modes of the projected system (50). Then, a reduced model of order
r, r = rs + 1, for the neutrally stable lifted system (39) can be obtained in the form of
(45), where now Φr =

[
Φs
rs vj

]
; Ψr =

[
Ψs
rs

wj
w∗j vj

]
. The reduced system keeps the one-

dimensional neutrally stable dynamics exactly, while the exponentially stable dynamics is
reduced to the order of rs.

Numerically, the neutrally stable eigenvectors of Ãj can be calculated using a Krylov method,
or even the power method: By running a control-free simulation of the periodic system (37)
with an arbitrary initial condition x(j) /∈ Es

(
Ãj

)
, one can approximate vj by x(j + lT ), with

a large l. Similarly, a long-time control-free simulation of the adjoint periodic system (43) is
needed to approximate wj . Then, when computing the transformations Φs

rs and Ψs
rs for the

projected system (50), one follows exactly the same procedures given in § 5.2.4. The only
difference is that in the Tp simulations of the periodic system (37) described in § 5.2.1, the
states should be projected onto Es

(
Ãj

)
by Pj at time j −m + T . The simulations then

resume with these states as new initial conditions. Similarly, in the adjoint simulations, the
adjoint states should be left-multiplied by P∗j at time j + T before the simulations resume.

By construction, this method is applicable to other neutrally stable/unstable periodic sys-
tems, with small neutrally stable/unstable dimensions. For unstable systems, in impulse-
response simulations one can repeatedly project the states once each period, using Pj , to
numerically confine the dynamics to the stable invariant subspace.

5.2.6 Numerical example

To illustrate the balanced POD algorithm, consider an exponentially stable example (sim-
ilar to that in [14]): a linear periodic system (37) with period T = 5, state dimension
n = 30, output dimension q = 30, control input dimension p = 1, and {A(k)}5k=1 are
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randomly generated diagonal matrices with diagonal entries bounded in [0.16, 0.96], guaran-
teeing asymptotic stability. The matrices B(k) and C(k) are also randomly generated, with
entries bounded in [0, 1].

Here we pick the “lifting time” j = 1. Choose mc = mo = 3T = 15. Figure 27(a) shows
the error plots of the infinity norm, ||G̃ − G̃r||∞/||G̃||∞ versus r, the order of the reduced
lifted system. Here G̃r is the impulse-response matrix of the reduced lifted system of order
r. We see that the snapshot-based balanced truncation gives a good approximation of exact
balanced truncation. Further, the balanced POD, even with low orders of output projection
rop, generates satisfying results. Recall that, for the lifted system, the order of output
projection is r̃op = ropT .

Figure 27(b) shows comparisons between balanced POD results with the same order of
output projection, one set based on T -periodic projection matrices along one period, and
the other using single time-invariant projection matrix (see § 5.2.3). For the cases where
rop are low, these two approaches give almost identical results, or even the latter one gives
better results. However, when the order of output projection rop increases, the results based
on T -periodic projection matrices are better than those by a single projection matrix, as we
expect.
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Figure 27: Error ||G̃ − G̃r̃||∞/||G̃||∞, for lifted balanced POD approach: (a) For exact
balanced truncation(+), balanced truncation by the method of snapshots but without output
projection(�), balanced POD with rop = 1 (♦), balanced POD with rop = 3 (◦), and the
lower bound for any model reduction scheme (−). All output projections are T -periodic.
(b) Time varying T -periodic output projections versus time-invariant output projections:
balanced POD with rop = 1 (♦), balanced POD with rop = 3 (◦) and balanced POD with
rop = 5 (+). Solid lines correspond to cases using T -periodic projection matrices, and dashed
lines using one single projection matrix.

This algorithm has also been applied to a neutrally stable, time-periodic system obtained by
linearizing the Ginzburg-Landau partial differential equation about its exponentially stable
time-periodic solution; see [40].
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Figure 28: Schematic for reduced order model of Wagner’s indicial response.

6 Control-oriented extensions of classical unsteady models

The classical models described in Section 2 are of limited use for control design: Theodorsen’s
models (Sec. 2.1) are valid only for sinusoidal maneuvers, and Wagner’s models (Sec. 2.2)
require a cumbersome convolution integral.

The main result of this section is a low-dimensional, state-space representation of unsteady
aerodynamic forces, patterned after Wagner’s indicial response model. Step-response simu-
lations in either angle of attack α or vertical position h are performed using an immersed
boundary projection method. Based on the lift coefficient history from these simulations, the
model reduction methods discussed in Section 5.1 (specifically, the Eigensystem Realization
Algorithm) is used to construct a state-space model in the following form:x

u
u̇


k+1

=

Ar 0 0
0 1 ∆t
0 0 1

x
u
u̇


k

+

Br0
∆t

 ük

(51)

CL(k∆t) =
[
Cr CLu CLu̇

] x
u
u̇


k

+ CLü
ük

where u = α for pitching, u = h for plunging, and u =
[
α h

]T for pitching and plunging.

For the system to be proper, we choose ü as the input∗. Furthermore, u and u̇ appear
explicitly in the state, since there is a quasi-steady dependence on these variables. The
additional fast dynamics, modeled by G(s), are obtained using the eigensystem realization
algorithm (ERA), resulting in a low-dimensional state-space representation, (Ar, Br, Cr), of
order r. This is shown in Figure 28.

The output of the model is the lift coefficient, CL, and the model structure is conveniently
expressed in terms of the stability derivatives, CLui · ui, and the additional fast dynamics,
∗There are added mass forces proportional to ü, except in the degenerate case of pitching about the

middle-chord.
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Cr · x:

CL = CLu · u + CLu̇
· u̇ + CLü

· ü + Cr · x (52)

The reduced-order model in Eq. (51) is shown to agree well with Wagner’s indicial response
over a range of frequencies and maneuvers. The goal of this section is not to demonstrate the
relevance or accuracy of Wagner’s model, but rather to demonstrate that it may be cast in the
convenient state-space form, either for use itself, or as the foundation for a more sophisticated
model. However, once it is observed that the reduced order model faithfully reconstructs
Wagner’s indicial response, comparisons with DNS for large-amplitude maneuvers provide
interesting context.

6.1 Reduced-order approximations of Wagner’s indicial response

This section details the process by which we obtain the reduced order model (ROM) in (51)
for the lift force on an airfoil as a function of motion input variables, angle of attack α
and vertical position h. In particular, given step-response experiments, we first subtract
off quasi-steady and added-mass forces in Section 6.1.1, and then model the remainder of
the fast dynamics using the eigensystem realization algorithm (ERA) in Section 6.1.2. A
step-by-step summary of the process is presented in Section 6.1.4.

Before proceeding with the details of the method, it is important to highlight two main
characteristics of aerodynamic step-response experiments that motivate the form of the
reduced order model. First, step responses in certain variables, such as angle of attack and
vertical velocity, result in nonzero steady-state lift. Second, the aerodynamic response to
smoothed step inputs, discussed in Section 6.1.3, are dominated by forces proportional to
the second derivatives of the configuration variables, α̈ and ḧ, for the duration of the step
maneuver.

The case of pitching about the middle chord is an exception to characteristic 2 above, and
a step in vertical position violates characteristic 1 above, and Section 6.1.5 addresses this
special case. Finally, the theory is presented for the case of single-input single-output (SISO)
systems in one configuration variable, either α or h; however, the theory generalizes to
multiple-input multiple-output (MIMO) systems, which is briefly discussed in Section 6.1.6.

6.1.1 Aerodynamic impulse response and stability derivatives

The following discussion provides a theoretical foundation relating the various transfer func-
tions, state space realizations and impulse-response simulations. In particular, a step re-
sponse in a given input variable u may be viewed as an impulse-response in the time deriva-
tive of that variable u̇. Moreover, in the instance when the output y depends on ü, it is
necessary for the input to be ü, since there is no way to represent a derivative in state-space
form.

In the discussion that follows, it may be helpful to think of u as angle of attack α and the
output y as the lift coefficient CL. However, the theory is presented in a general framework
for completeness.

Impulse response in u According to linear system theory, the impulse-response yδu(t) is
the output corresponding to a delta function input, u(t) = δ(t).† By linear superposition, it
†The output is the lift coefficient, y = CL and the input is either the angle-of-attack, u = α, or the

vertical position, u = h.
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u y
Gu

Figure 29: Transfer function Gu(s) between u and y.

is possible to construct the output response to an arbitrary input u(t) by convolution with
the impulse-response yδu(t):

y(t) =
∫ t

0
yδu(t− τ)u(τ)dτ = (yδu ∗ u)(t) (53)

Taking the Laplace transform of both sides of Eq. (53) yields the convenient form

Y (s) = Gu(s)U(s) (54)

where Gu(s) = L
[
yδu(t)

]
is the transfer function relating input signals U(s) to output signals

Y (s). This is shown schematically in Figure 29.

Step response in u (impulse response in u̇) For aerodynamic systems, an impulse
response in u (either angle of attack or vertical position) might be nonphysical. Historically,
it was practical to consider the step response ySu(t) (indicial response) to step inputs u =
H(t), where H(t) is the Heaviside step function. The step response in u is the same as
the impulse response in u̇, so that ySu = yδu̇. The superposition integral in Eq. (53) may be
rewritten‡ in terms of the step response yS(t):

y(t) = yS(t)u(0) +
∫ t

0
yS(t− τ)u̇(τ)dτ (55)

For aerodynamic systems, there may be a nonzero steady-state value for the step-response
in u. The steady-state value, given by Gu(0) = yδu̇(∞) corresponds to the quasi-steady lift
slope CLu . It is convenient to split the step-response ySu(t) = yδu̇(t) into the steady-state and
transient components:

yδu̇(t) = yδu̇(∞) + yδu̇
′
(t) (56)

so that Eq. (55) becomes

y(t) = yδu̇(∞)u(0) + yδu̇
′
(t)u(0) + yδu̇(∞)

∫ t

0
u̇(τ)dτ +

∫ t

0
yδu̇
′
(t− τ)u̇(τ)dτ (57)

= yδu̇
′
(t)u(0) + yδu̇(∞)u(t) +

∫ t

0
yδu̇
′
(t− τ)u̇(τ)dτ (58)

Again, taking the Laplace transform of both sides of Eq. (58) yields

‡This is seen by substituting yδu̇(t) =
R t
0
yδu(t − s)ds into the following integral

R t
0
yδu̇(t − τ)u̇(τ)dτ and

integrating by parts.
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Figure 30: Transfer function Gu̇(s) between u̇ and y.

Y (s) = Gu̇
′(s)u(0) + yδu̇(∞)U(s) +Gu̇

′(s)L [u̇(t)] (59)

=
[
yδu̇(∞) + sGu̇

′(s)
]
U(s) (60)

where Gu̇(s) = L
[
yδu̇(t)

]
is the transfer function from u̇ to y, as shown in Figure 30.

Rearranging Eq. (60) yields the following:

Y (s) =
[
Gu(0)
s

+Gu̇
′(s)
]

︸ ︷︷ ︸
Gu̇(s)

sU(s) (61)

where Gu(0) = yδu̇(∞). This transfer function corresponds to the following state-space
representation: [

x
u

]
k+1

=
[
A 0
0 1

] [
x
u

]
k

+
[
B
∆t

]
u̇k

(62)

yk =
[
C Gu(0)

] [x
u

]
k

+Du̇k

where (A,B,C,D) is a state-space realization of Gu̇
′(s).

Impulse response in ü It is observed that there are added-mass forces proportional to
ü. These added-mass terms appear in Gu̇

′(s) as nonproper derivative terms, so that there
does not exist a state-space realization (A,B,C,D) for Gu̇

′(s). Therefore, we must choose
ü as the input variable for the system to be proper and representable in state-space form.

After subtracting off the steady-state lift corresponding to Gu(0) = CLu , it is possible to
integrate the impulse response in u̇ to obtain the impulse response in ü:

yδü(t) =
∫ t

0
yδu̇(τ)dτ (63)

This amounts to multiplying the input by s and the output by 1/s. It is now possible
to repeat the process above, subtracting off the steady-state lift Gu̇

′(0) = yδü(∞), now
corresponding to CLu̇

. The result is a transfer function Gü(s) from ü to y as shown in
Figure 31:
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Figure 31: Transfer function Gü(s) between ü and y.

Gü(s) =
Gu(0)
s2

+
Gu̇
′(0)
s

+Gü
′(s) (64)

Let (A,B,C,D) be a state-space realization of the transfer function Gü
′(s). It is then

possible to rewrite the time-domain response in the more convenient linear system frameworkx
u
u̇


k+1

=

A 0 0
0 1 ∆t
0 0 1

x
u
u̇


k

+

B0
∆t

 ük

(65)

yk =
[
C Gu(0) Gu̇

′(0)
] x

u
u̇


k

+D ük

with initial condition
[
0 u(0)

]T . It is worth noting that the x dynamics are decoupled
from the last two states

[
u u̇

]T . The x dynamics model the transient dynamics from the
step-response, while the additional terms Gu(0)u and Gu̇

′(0)u̇ account for the quasi-steady
lift associated with constant u and u̇. The next section details an approach to obtain
an r-dimensional realization (Ar, Br, Cr, Dr) for Gü

′(s) using the eigensystem realization
algorithm.

6.1.2 Modeling fast dynamics using the Eigensystem Realization Algorithm

One method of obtaining a state-space realization for the transfer function Gü
′(s) is the

eigensystem realization algorithm (ERA). As described in Section 5.1, this method involves
taking snapshots yδü

′(k∆t) from an impulse-response function yδü
′(t) = L−1[Gü

′(s)] and it
returns a reduced order, discrete-time, state-space model with time-step ∆t.

Recall that we begin with a full-order model, and wish to construct a reduced-order model
of the form

x(k + 1) = Ax(k) +Bu(k)
y(k) = Cx(k) +Du(k)

}
Reduction−−−−−−→ xr(k + 1) = Arxr(k) +Bru(k)

y(k) = Crxr(k) +Dru(k)
(66)

Note that it is not necessary to know the full-order model explicitly: we need not know the
matrices (A,B,C,D), but we do need to be able to obtain impulse response data from the
system. This data may be obtained either from simulations or from experiments.

The steps involved are described in more detail in Section 5.1, but here we give a brief
summary:
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1. The first term in the impulse response is the D matrix, or feed-through term. If the
impulse is in ü, then the D matrix corresponds to the term CLü

which accounts for
added mass proportional to ü.

2. Gather the next (mc +mo) + 2 outputs from the impulse-response simulation, where
mc and mo are integers representing the number of snapshots for controllability and
observability. The outputs y(k) = CAk−1B are called Markov parameters, and are
synthesized into a generalized Hankel matrices:

H =


CB CAB · · · CAmcB
CAB CA2B · · · CAmc+1B

...
...

. . .
...

CAmoB CAmo+1B · · · CAmc+moB

 (67)

H ′ =


CAB CA2B · · · CAmc+1B
CA2B CA3B · · · CAmc+2B

...
...

. . .
...

CAmo+1B CAmo+2B · · · CAmc+mo+1B

 (68)

3. Compute the singular value decomposition of H:

H = UΣV ∗ =
[
U1 U2

] [Σ1 0
0 0

] [
V ∗1
V ∗2

]
= U1Σ1V

∗
1 (69)

4. Finally, let Σr be the first r × r block of Σ1, Ur, Vr the first r columns of U1, V1, and
the reduced order Ar, Br, Cr are given as follows:

Ar = Σ−1/2
r U∗rH

′VrΣ−1/2
r (70)

Br = first p columns of Σ1/2
r V ∗1 (71)

Cr = first q rows of UrΣ1/2
r (72)

6.1.3 Choice of step function

For a number of reasons, an actual step response is non-physical. First, it is impossible to
command in experiments or simulations, because it would correspond to a body instanta-
neously dematerializing and then rematerializing it in another location. An alternative is to
use a smoothed step maneuver and approach the limit as the maneuver becomes very rapid.
As the maneuver becomes increasingly rapid, the added-mass forces begin to dominate; in
fact, a good rule of thumb is to choose a maneuver rapid enough that the lift response for
the duration of the maneuver is dominated by added-mass.

In our simulations, the duration of the maneuver is T = .01 convective time units, and
the amplitude is either A = 1◦ ≈ .01745 rad in the case of pitching or A = .01745 chord
lengths in the case of vertical position. This is sufficiently rapid for the added-mass forces
to dominate during the maneuver.

The linear ramp maneuver was first introduced as a canonical pitching maneuver to compare
and study various experiments, simulations and models[46]. The equations for u and u̇ are
given in Eqs. (73–75), and the maneuver is shown in Figure 32:
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Figure 32: Linear ramp maneuver in u.

PLANTuk u(t) yky(t)

Figure 33: Diagram illustrating the discrete-time system arising from pitch-ramp step.

G(t) = log
[

cosh(at)
cosh(a(t− T ))

]
(73)

u(t) = A
G(t)

maxG(t)
(74)

u̇(t) = A
tanh(at)− tanh(a(t− T ))

maxG(t)
(75)

The start of the maneuver is t = 0 and the duration of the ramp-up is T . The parameter
a effects how gradual or abrupt the ramp acceleration is. By choosing a large, such as
a = 1000, it is possible to obtain a maneuver where the ü acceleration effects are localized
near time t = 0 and t = T , and the velocity u̇ is constant throughout much of the maneuver.
This results in an approximately piecewise linear ramp-up, where the transition at t = 0
and t = T are smoothed.

The linear ramp maneuver has a number of benefits that make it a natural choice for our
smoothed step maneuver. First, the boxy profile of the velocity u̇ resembles the shape of a
discrete-time impulse in u̇ with time step T . This makes it possible to run simulations that
fully resolve the maneuver in time, and then sample starting at the middle of the maneuver
with sampling time T and obtain a good approximation of the discrete time system. This
is shown schematically in Figure 33.

51



6.1.4 Method summary

The overall method is summarized as follows:

1. Run an impulse-response simulation in u̇, which is a step response in u. This response
exhibits dominant derivative (ü) term during the smoothed step maneuver. This
indicates that the input should be ü in order to have a proper system, which will be
addressed in step 3.

2. Subtract off CLu term, corresponding to steady state lift after step in u:

C ′L = CL − CLα (76)

3. Integrate to get impulse in ü (less CLu contribution)

C̃L =
∫
C ′Ldτ (77)

4. Subtract off CLu̇
term, corresponding to steady state lift due to constant u̇,

C̃ ′L = C̃L − CLu̇
(78)

5. Sample smoothed step input and output functions starting at the middle of the
smoothed impulse with sampling time ∆t.

6. Obtain Markov parameters

H = markov(Y,U,M)

7. First term, H1 is the D matrix corresponding to ü feed-through term, CLü
.

8. The rest of the Markov parameters Hj go into ERA code

[Ar,Br,Cr,HSVs] = ERA(H,m,n,r)

9. Synthesize into final form of ROM:

x
u
u̇


k+1

=

Ar 0 0
0 1 ∆t
0 0 1

x
u
u̇


k

+

Br0
∆t

 ük

(79)

CL(k∆t) =
[
Cr CLu CLu̇

] x
u
u̇


k

+ CLü
ük

The preceding algorithm is sufficiently general to produce reduced order models for an airfoil
pitching about various points along the chord, plunging vertically, or pitching and plunging.
However, because of the exceptions mentioned in the introduction to this section, the case
of middle-chord pitching and vertical plunging require minor special attention.
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• Exception 1. Mid-chord pitching: Because there are no added-mass forces pro-
portional to α̈ in the degenerate case of pitching about the middle chord, we must
manually set CLα̈ = 0. Although the value obtained in the algorithm is quite small,
any non-zero value will result in incorrect behavior at high frequencies due to the
relative degree.

• Exception 2. Vertical plunging: Given a step-up in vertical position, there is no
corresponding steady-state lift, and so we manually set CLh = 0. This guarantees the
correct behavior at low frequencies.

6.1.5 Possible variations for plunging and pitching about mid-chord

As mentioned above, middle-chord pitching and vertical plunging are exceptions and require
special attention. The reduced order model, Eq. (51) is sufficiently general to handle these
exceptions. In the case of pitching about the middle chord, we manually set CLα̈ = 0 and
in the case of vertical plunging we manually set CLh = 0.

Alternatively, it is possible to eliminate steps 3–4 above for mid-chord pitching, resulting in
the model: [

x
α

]
k+1

=
[
Ar 0
0 1

] [
x
α

]
k

+
[
Br
∆t

]
α̇k

(80)

CL(k∆t) =
[
Cr CLα

] [x
α

]
k

+ CLα̇ α̇k

For plunging, one may use a step in vertical velocity, modifying steps 1–4 and results in the
model: [

x
ḣ

]
k+1

=
[
Ar 0
0 1

] [
x
ḣ

]
k

+
[
Br
∆t

]
ḧk

(81)

CL(k∆t) =
[
Cr CLḣ

] [x
ḣ

]
k

+ CLḧ ḧk

It is interesting to note that in this form, with the input for pitching about the mid-chord
now α̇, these models should be equivalent by symmetry. In other words, a plunging motion
ḣ(t) translates directly into an angle-of-attack motion αeff(t) by a change of variables.

6.1.6 Multiple Input Multiple Output (MIMO) generalization

An important result of this paper is that the above algorithm generalizes to MIMO rep-
resentations. Lift coefficient dynamics in angle of attack and vertical position are easily
representable in a combined model.

First, treat each step response separately, first subtracting off CLu , then integrating, sub-
tracting off CLu̇ , and finally passing through a Markov parameter identification algorithm to
identify CLü and the transient impulse response in ü. Until now, we have exactly repeated
steps 1–7 individually for each step response. Now, the ERA algorithm, step 8, requires a
deviation. The Markov parameters CAkB are no longer coefficients, but matrices of size
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Figure 34: Step-responses (left, middle) and Hankel singular values (right) for 1◦ pitch-up
about the quarter chord. DNS (black) is compared with a 6-mode ERA model (red).

input × output. In other words, we stack the two transient impulse responses to obtain a
multidimensional impulse response. We pass this through the ERA algorithm to obtain a
representation (Ar, Br, Cr) for the remainder of the dynamics. The full expression for the
model is:


x
α
h
α̇

ḣ


k+1

=


Ar 0 0 0 0
0 1 0 ∆t 0
0 0 1 0 ∆t
0 0 0 1 0
0 0 0 0 1



x
α
h
α̇

ḣ


k

+


Brα Brh

0 0
0 0

∆t 0
0 ∆t


[
α̈

ḧ

]
k

(82)

CL(k∆t) =
[
Cr CLα CLh CLα̇ CLḣ

]

x
α
h
α̇

ḣ


k

+
[
CLα̈ CLḧ

] [α̈
ḧ

]
k

6.2 Results: small-amplitude maneuvers

In this section, we present the results of the procedure described in section 6.1, applied
to small-amplitude pitching and plunging maneuvers. As with previous examples in this
report, we study a flat plate at Re = 100.

6.2.1 Pitching

Here, we present results for a flat plate pitching about the quarter chord. The results are
similar for airfoils pitched about the leading edge or the middle chord, with the exception
that for middle-chord pitching, there are no added mass effects on the lift.

Figure 34 shows a comparison of a small-amplitude step for the full simulation (DNS),
compared with a 6-mode model obtained by the Eigensystem Realization Algorithm (adjoint-
free Balanced POD, from Section 5). In the leftmost plot, the responses due to CLälpha,
CLα̇, and CLα have been subtracted off, as described in Section 6.1.4, so all that remains is
the term G(s) in Figure 28. The middle plot shows the full step response CL(t), with these
terms included. Note that in both cases, the agreement of the 6-mode model is excellent.
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Figure 35: Frequency response of Wagner’s model and ERA models for pitching at quarter
chord.

The rapid decay of the Hankel singular values in the rightmost plot shows that the response
may be captured effectively by a low-dimensional model.

Figure 35 shows a comparison of the Bode plots (frequency response) for the full simu-
lation (DNS), compared with the full Wagner model, and the reduced-order ERA model.
Theodorsen’s model is also shown, for comparison. Note that in order to compute the Bode
plot for Wagner’s model, one must compute a convolution integral at each frequency, while
for the reduced-order model, one has a simple 6th-order transfer function, suitable for con-
trol design. Agreement of this reduced-order model with Wagner is nearly perfect, and
agreement with DNS is excellent as well.

6.2.2 Plunging

Here, we consider a maneuver as in the previous section, but for a flat plate undergoing pure
plunge.

Figure 36 shows the step responses for the plunge-up maneuver, comparing the full DNS
with a 7th-order ERA model. As in Figure 34, the middle plot is the actual lift, while the
leftmost plot shows the lift with the terms due to CLälpha, CLα̇, and CLα subtracted off, as
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Figure 36: Step-responses (left, middle) and Hankel singular values (right) for plunge-up
maneuver. DNS (black) is compared with a 7-mode ERA model (red).

described in Section 6.1.4. The step responses are visually identical.

Figure 37 shows the corresponding Bode plots for these cases, including a comparison with
Wagner and Theodorsen’s models. All of the models match the DNS well, except for a
15–20◦ discrepancy in phase for very low frequencies. As before, the ERA model agrees
nearly perfectly with Wagner’s full indicial response, but is much more convenient to use for
control design.

6.3 Results: large-amplitude maneuvers

Finally, we apply these models to a canonical unsteady maneuver considered in [46]. In this
maneuver, the airfoil pitches up to a large angle of attack of 45◦, holds for one convective
time unit, and then pitches back down to zero angle of attack. Wagner’s models, and the
approximations to them given in the previous section, are designed for small angles of attack,
and are not meant to capture such large excursions. However, we compare the model’s
predictions here to better understand the significance of nonlinearities on the unsteady
aerodynamics.

Figure 39 shows the lift when the airfoil is pitched about the quarter chord, at Reynolds
number 100. The lift from the full DNS is compared with the predictions of Wagner’s model,
and our 6-state low-order model from Section 6.2.1. The agreement between our model and
Wagner is nearly perfect, as expected. The agreement with DNS is good up to about 2
convective time units, at which time the angle of attack exceeds 20◦. The large peaks in lift
are due to the added mass response, and the models are very effective at capturing these.
The agreement is poor between about 2 and 4 convective time units, but then matches quite
well as the airfoil pitches back down to zero angle of attack.

One of the reasons for the discrepancy for large angles of attack is that in the linearized
models, the force is normal to the airfoil’s surface, while the lift is defined as the force normal
to the freestream velocity. Thus, a simple cos(α) correction can be applied to correct for this
difference. When this correction is applied (shown in the right plot in Figure 39, agreement
with DNS is good for the entire pitch-up maneuver, but then begins to disgree during the
hold and pitch-down portions.

Figure 40 shows the response analogous to that shown in Figure 39, but for the airfoil pitched
about the middle chord. Here, there are no added mass forces from the unsteady pitching, so
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Figure 37: Frequency response of Wagner’s model and ERA models for plunging.
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Figure 38: Canonical maneuver with pitch-up, hold, and pitch-down phases, showing the
instantaneous vorticity field at various points along the maneuver, at Re = 100.

1 2 3 4 5 6 7

0.5

0

0.5

1

1.5

2

2.5

3

3.5

Time

Li
ft 

C
oe

ffi
ci

en
t

 

 
DNS
6-mode ERA
Wagner

1 2 3 4 5 6 7

0.5

0

0.5

1

1.5

2

2.5

3

3.5

Time

Li
ft 

C
oe

ffi
ci

en
t

 

 
DNS

6-mode ERA × cos(α)

Wagner × cos(α)

Figure 39: Comparison of lift model for canonical pitch-ramp-hold maneuver about quarter
chord : Left: linearized model prediction; Right: model prediction with cos(α) correction.
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Figure 40: Comparison of lift model for canonical pitch-ramp-hold maneuver about middle
chord : Left: linearized model prediction; Right: model prediction with cos(α) correction.

the response looks significantly smoother. As before, the linearized model prediction is good
when the angle of attack is small, but deviates when the angle becomes large. The cos(α)
correction improves the response during the pitch-up portion, but degrades the response
during the pitch-down portion.

6.4 Conclusions

The goal of this section is to present a procedure for constructing unsteady aerodynamic
models that are suitable for control design. The models are based on Wagner’s indicial
response [63], and agree with Wagner’s models to an arbitrarily high degree of accuracy.
While Wagner’s models represent the lift as a convolution integral that is cumbersome to
compute, and not suitable for control synthesis, our procedure produces state-space models
that may be used directly for control design. Furthermore, our models are formulated
in a way that directly builds upon standard approaches incorporating classical “stability
derivatives” CLα, CLα̇, CLα̈ (as in [57]), as shown in Figure 28.

Our models predict the unsteady response very well for small-amplitude maneuvers, as
shown by the frequency responses in Figures 35 and 37. For large amplitude maneuvers,
such as the canonical maneuver shown in Figure 38, agreement is poor when the angle of
attack becomes larger than about 20◦. More work is needed to extend these models to the
nonlinear regime.

Acknowledgment/Disclaimer

This work was sponsored by the Air Force Office of Scientific Research, USAF, under
grant/contract number FA9550-07-1-0127. The views and conclusions contained herein are
those of the authors and should not be interpreted as necessarily representing the official
policies or endorsements, either expressed or implied, of the Air Force Office of Scientific
Research or the U.S. Government.

59



References

[1] S. Ahuja and C. W. Rowley. Feedback control of unstable steady states of flow past a
flat plate using reduced-order estimators. J. Fluid Mech., 645:447–478, Feb. 2010.

[2] S. Ahuja, C. W. Rowley, I. G. Kevrekidis, M. Wei, T. Colonius, and G. Tadmor.
Low-dimensional models for control of leading-edge vortices: Equilibria and linearized
models. AIAA Paper 2007-709, 45th AIAA Aerospace Sciences Meeting and Exhibit,
Jan. 2007.

[3] J. C. Akers and D. S. Bernstein. ARMARKOV least-squares identification. In Proceed-
ings of the ACC, pages 186–190, Albuquerque, NM, USA, 1997.

[4] D. A. Allwine, J. A. Strahler, D. A. Lawrence, J. E. Jenkins, and J. H. Myatt. Nonlinear
modeling of unsteady aerodynamics at high angle of attack. AIAA Paper 2004-5275,
2004.

[5] S. Bagheri, L. Brandt, and D. S. Henningson. Input–output analysis, model reduction
and control of the flat-plate boundary layer. J. Fluid Mech., 620:263–298, 2009.

[6] B. Bamieh and J. B. Pearson. The H2 problem for sampled-data systems. Sys. Control
Lett., 19:1–12, 1992.

[7] S. Brunton and C. W. Rowley. Modeling the unsteady aerodynamic forces on small-scale
wings. AIAA Paper 2009-1127, 47th Aerospace Sciences Meeting, Jan. 2009.

[8] S. L. Brunton and C. W. Rowley. Fast computation of finite-time Lyapunov exponent
fields for unsteady flows. Chaos, 20:017510, 2010.

[9] S. L. Brunton, C. W. Rowley, K. Taira, T. Colonius, J. Collins, and D. R. Williams.
Unsteady aerodynamic forces on small-scale wings: experiments, simulations and mod-
els. AIAA Paper 2008-520, 46th AIAA Aerospace Sciences Meeting and Exhibit, Jan.
2008.

[10] R. H. Cabell, M. A. Kegerise, D. E. Cox, and G. P. Gibbs. Experimental feedback
control of flow-induced cavity tones. AIAA J., 44(8):1807–1815, 2006.

[11] L. N. Cattafesta, III, S. Garg, M. Choudhari, and F. Li. Active control of flow-induced
cavity resonance. AIAA Paper 97-1804, June 1997.

[12] Y. Chahlaoui and P. Van Dooren. Model reduction of time-varying systems. In Dimen-
sion reduction of large-scale systems, pages 131–148. Springer-Verlag, 2006.

[13] T. Colonius and K. Taira. A fast immersed boundary method using a nullspace ap-
proach and multi-domain far-field boundary conditions. Comp. Meth. Appl. Mech. Eng.,
197(25-28):2131–46, 2008.

[14] M. Farhood, C. L. Beck, and G. E. Dullerud. Model reduction of periodic systems: a
lifting approach. Automatica, 41:1085–1090, 2005.

[15] E. Franco, D. N. Pekarek, J. Peng, and J. O. Dabiri. Geometry of unsteady fluid
transport during fluid-structure interactions. J. Fluid Mech., 589:125–145, 2007.

60



[16] C. Garth, F. Gerhardt, X. Trichoche, and H. Hagen. Efficient computation and vi-
sualization of coherent structures in fluid flow applications. IEEE Transactions on
Visulization and Computer Graphics, 13(6):1464–1471, 2007.

[17] W. Gawronski. Balanced control of flexible structures. Springer, 1996.

[18] M. Goman and A. Khrabrov. State-space representation of aerodynamic characteristics
of an aircraft at high angles of attack. J. Aircraft, 31(5):1109–1115, 1994.

[19] M. Green. Analysis of bio-inspired propulsors. PhD thesis, Princeton University, 2009.

[20] M. A. Green, C. W. Rowley, and G. Haller. Detection of Lagrangian coherent structures
in 3D turbulence. J. Fluid Mech., 572:111–120, Feb. 2007.

[21] J. Guckenheimer and P. J. Holmes. Nonlinear Oscillations, Dynamical Systems, and
Bifurcations of Vector Fields, volume 42 of Applied Mathematical Sciences. Springer-
Verlag, New York, 1983.

[22] G. Haller. Distinguished material surfaces and coherent structures in 3d fluid flows.
Physica D, 149:248–277, 2001.

[23] G. Haller. Lagrangian coherent structures from approximate velocity data. Phys. Fluids,
14(6):1851–1861, 2002.

[24] G. Haller and G. Yuan. Lagrangian coherent structures and mixing in two dimensional
turbulence. Physica D, 147:352–370, 2000.

[25] P. Hartman. Ordoinary Differential Equations. John Wiley and Sons, 1964.

[26] M. Ilak and C. W. Rowley. Modeling of transitional channel flow using balanced proper
orthogonal decomposition. Phys. Fluids, 20(034103), 2008.

[27] M. Ilak and C. W. Rowley. Modeling of transitional channel flow using balanced proper
orthogonal decomposition. Phys. Fluids, 20:034103, March 2008.

[28] J.-N. Juang and R. S. Pappa. An eigensystem realization algorithm for modal parameter
identification and model reduction. J. Guid. Contr. Dyn., 8(5):620–627, 1985.

[29] J.-N. Juang and M. Q. Phan. Identification and control of mechanical systems. Cam-
bridge University Press, 2001.

[30] M. M. Koochesfahani. Vortical patterns in the wake of an oscillating airfoil. AIAA J.,
27:1200–1205, 1989.

[31] H. Küsner. Zusammenfassender bericht über den instationären auftrieb von flügeln.
Luftfahrtforschung, 13(12):410–424, 1935.

[32] S. Lall, J. E. Marsden, and S. Glavaški. A subspace approach to balanced truncation
for model reduction of nonlinear control systems. Int. J. Robust Nonlinear Control,
12:519–535, 2002.

[33] J. G. Leishman. Principles of Helicopter Aerodynamics. Cambridge University Press,
2 edition, 2006.

61



[34] F. Lekien. Time-dependent dynamical systems and geophysical flows. PhD thesis, Cal-
ifornia Institute of Technology, 2003.

[35] F. Lekien, C. Coulliette, A. J. Mariano, E. H. Ryan, L. K. Shay, G. Haller, and J. E.
Marsden. Pollution release tied to invariant manifolds: a case study for the coast of
florida. Phys. D, 210:1–20, 2005.

[36] F. Lekien, S. C. Shadden, and J. E. Marsden. Lagrangian coherent structures in n-
dimensional systems. Journal of Mathematical Physics, 48:065404, 2007.

[37] R. K. Lim, M. Q. Phan, and R. W. Longman. State-space system identification with
identified Hankel matrix. Mechanical and Aerospace Engineering Tech. Report 3045,
Princeton University, 1998.

[38] D. Lipinski, B. Cardwell, and K. Mohseni. A lagrangian analysis of a two-dimensional
airfoil with vortex shedding. jphysa, 41:344011, 2008.

[39] Z. Ma, S. Ahuja, and C. W. Rowley. Reduced order models for control of fluids using
the eigensystem realization algorithm. Theor. Comput. Fluid Dyn., (accepted), 2010.

[40] Z. Ma and C. W. Rowley. Low-dimensional linearized models for systems with periodic
orbits, with application to the Ginzburg-Landau equation. AIAA Paper 2008-4196, 4th
Flow Control Conference, June 2008.

[41] J. Magill, M. Bachmann, G. Rixon, and K. McManus. Dynamic stall control using a
model-based observer. J. Aircraft, 40(2):355–362, 2003.

[42] R. A. Meyer and C. S. Burrus. A unified analysis of multirate and periodically time-
varying digital filters. IEEE Trans. Circuits Syst., 22:162–168, 1975.

[43] B. C. Moore. Principal component analysis in linear systems: Controllability, observ-
ability, and model reduction. IEEE Trans. Automat. Contr., 26(1):17–32, Feb. 1981.

[44] J. H. Myatt and G. A. Addington. Rotary-rate effects on critical-state location for a
65-degree delta wing. AIAA Paper 99-4098, 1999.

[45] B. Noack, K. Afanasiev, M. Morzyński, G. Tadmor, and F. Thiele. A hierarchy of low-
dimensional models for the transient and post-transient cylinder wake. J. Fluid Mech.,
497:335–363, 2003.

[46] M. V. OL, A. Altman, J. D. Eldredge, D. J. Garmann, and Y. Lian. Résumé of the aiaa
fdtc low reynolds number discussion group’s canaonical cases. AIAA Paper 2010-1085,
48th AIAA Aerospace Sciences Meeting, Jan. 2010.

[47] K. Padberg, T. Hauff, F. Jenko, and O. Junge. Lagrangian structures and transport in
turbulent magnetized plasmas. New J. Phys., 9:400, 2007.

[48] J. Peng and J. O. Dabiri. The ‘upstream wake’ of swimming and flying animals and its
correlation with propulsive efficiency. J. Exp. Biol., 211:2669–2677, 2008.

[49] C. W. Rowley. Model reduction for fluids using balanced proper orthogonal decompo-
sition. Int. J. Bifurcation Chaos, 15(3):997–1013, Mar. 2005.

62



[50] F. Sadlo and R. Peikert. Efficient visualization of lagrangian coherent structures by fil-
tered amr ridge extraction. IEEE Transactions on Visulization and Computer Graphics,
13(6), 2007.

[51] H. Salman, J. S. Hesthaven, T. Warburton, and G. Haller. Predicting transport by
lagrangian coherent structures with a high-order method. Theor. Comput. Fluid Dyn.,
21:39–58, 2007.

[52] S. Shadden, K. Katija, M. Rosenfeld, J. Marsden, and J. O. Dabiri. Transport and
stirring induced by vortex formation. J. Fluid Mech., 593:315–331, 2007.

[53] S. Shadden, F. Lekien, and J. E. Marsden. Definition and properties of Lagrangian
coherent structures from finite-time Lyapunov exponents in two-dimensional aperiodic
flows. Phys. D, 212:271–304, 2005.

[54] K. Shi, H.-P. Seidel, H. Theisel, T. Weinkauf, and H.-C. Hege. Visualizing transport
structures of time-dependent flow fields. IEEE Computer Graphics and Applications,
pages 24–36, September/October 2008.

[55] S. Shokoohi, L. M. Silverman, and P. Van Dooren. Linear time-variable systems: Bal-
ancing and model reduction. IEEE Trans. Automat. Contr., 28:810–822, 1983.

[56] L. Sirovich. Turbulence and the dynamics of coherent structures, parts I–III. Q. Appl.
Math., XLV(3):561–590, Oct. 1987.

[57] R. F. Stengel. Flight Dynamics. Princeton University Press, 2004.

[58] T. Theodorsen. General theory of aerodynamic instability and the mechanism of flutter.
Technical Report 496, NACA, 1935.

[59] M. Tobak and L. B. Schiff. On the formulation of the aerodynamic characteristics in
aircraft dynamics. Technical Report R-456, NASA, 1976.

[60] A. Varga. Balanced truncation model reduction of periodic systems. In Proceedings of
the 39th IEEE Conference on Decision and Control, pages 2379–2384, 2000.

[61] E. I. Verriest and T. Kailath. On generalized balanced realizations. IEEE Trans.
Automat. Contr., 28:833–844, 1983.

[62] T. von Karman and W. R. Sears. Airfoil theory for non-uniform motion. J. Aeronaut.
Sci., 5(10):379–390, 1938.

[63] H. Wagner. über die entstehung des dynamischen auftriebes von tragflügeln. Zeitschrift
für Angewandte Mathematic und Mechanik, 5(1):17, 1925.

[64] Y. Wang, G. Haller, A. Banaszuk, and G. Tadmor. Closed-loop lagrangian separation
control in a bluff body shear flow model. Phys. Fluids, 15(8):2251–66, 2003.

[65] M. M. Wilson, J. Peng, J. O. Dabiri, and J. D. Eldgredge. Lagrangian coherent struc-
tures in low Reynolds number swimming. J. Phys.: Condens. Matter, 21:204105, 2009.

[66] K. Zhou, G. Salomon, and E. Wu. Balanced realization and model reduction for unstable
systems. Int. J. Robust and Nonlin. Contr., 9(3):183–198, Mar. 1999.

63



Personnel Supported During Duration of Grant

Steven Brunton Graduate student, Princeton University
Zhanhua Ma Graduate Student, Princeton University
Milos Ilak Graduate student, Princeton University
Juan Melli Graduate student, Princeton University
Brandt Belson Graduate student, Princeton University
Clarence W. Rowley Associate Professor, Princeton University

Publications

• S. Brunton and C. W. Rowley. Modeling the unsteady aerodynamic forces on small-
scale wings. AIAA Paper 2009-1127, 47th Aerospace Sciences Meeting, Jan. 2009.

• S. L. Brunton and C. W. Rowley. Fast computation of finite-time lyapunov exponent
fields for unsteady flows. 20:017510, 2010.

• S. L. Brunton and C. W. Rowley. Unsteady aerodynamic models for agile flight at low
reynolds numbers. AIAA Paper 2010-552, 48th AIAA Aerospace Sciences Meeting,
Jan. 2010.

• S. L. Brunton, C. W. Rowley, K. Taira, T. Colonius, J. Collins, and D. R. Williams.
Unsteady aerodynamic forces on small-scale wings: experiments, simulations and mod-
els. AIAA Paper 2008-520, 46th AIAA Aerospace Sciences Meeting and Exhibit, Jan.
2008.

• Z. Ma, S. Ahuja, and C. W. Rowley. Reduced order models for control of fluids using
the eigensystem realization algorithm. Theor. Comput. Fluid Dyn., (available online),
doi:10.1007/s00162-010-0184-8, 2010.

• Z. Ma and C. W. Rowley. Low-dimensional linearized models for systems with periodic
orbits, with application to the Ginzburg-Landau equation. AIAA Paper 2008-4196,
4th Flow Control Conference, June 2008.

• Z. Ma, C. W. Rowley, and G. Tadmor. Snapshot-based balanced truncation for linear
time-periodic systems. IEEE Transactions on Automatic Control, 55(2):469–473, Feb.
2010.

Honors & Awards Received

• Distinguished Teacher Award, Princeton School of Engineering and Applied Science,
2010.

• Institute for Defense Analysis, Defense Science Study Group member, 2008–2009.

• Princeton Engineering commendation list for outstanding teaching, for MAE 434, Fall
2009

• Princeton Engineering commendation list for outstanding teaching, for MAE 501, Fall
2007

• Princeton Engineering commendation list for outstanding teaching, for MAE 433,
Spring 2007.

64

http://dx.doi.org/10.1007/s00162-010-0184-8


Interactions/transitions

The results of this research were presented at several conferences: the AIAA Aerospace
Sciences Meetings in 2008, 2009, 2010, and SIAM Dynamical Systems meeting in Snowbird,
UT (May 2007). A number of interactions with AFRL perssonel were maintained, especially
with Dr. Michael Ol and Dr. James Myatt.

65


	Executive summary
	Techniques
	Summary of this report

	Background: classical models
	Theodorsen's frequency response
	Wagner's indicial response

	Finite-time Lyapunov exponents for detecting breakdown of classical models
	Fast computation of time-varying FTLE fields
	Breakdown of classical unsteady models

	Nonlinear models for unsteady flows at fixed angle of attack
	Phenomenological models
	Models using POD and Galerkin projection

	Balanced model reduction
	Balanced POD models without adjoints
	Balanced truncation for periodic systems

	Control-oriented extensions of classical unsteady models
	Reduced-order approximations of Wagner's indicial response
	Results: small-amplitude maneuvers
	Results: large-amplitude maneuvers
	Conclusions


